
CS134b Lab #2
January 19, 2001 Due January 29, 2001

1 Introduction

In this lab assignment, we are going to implement the first phase of the compiler: lexing and
parsing. The goal of this phase is to produce an abstract syntax tree (AST). An AST is a data
structure that represents the program in a file in a simplified tree form. Comments, white
space, parenthesization have been removed. The AST representation makes it much easier for
the rest of the compiler to examine and interpret the program.

The front end of a compiler has three parts:

1. Lexing separates the text in an input file into tokens that represent things like numbers,
identifiers, special characters, keywords, etc. It also removes comments and whitespace.
We will implement the lexer using the ocamllex program.

2. Parsing produces the AST from the sequence of tokens returned by the lexer. The parser
is specified as a context-free grammar that includes a semantic action for each production
in the grammar. We will implement the parser using the ocamlyacc program.

3. Semantic analysis generates intermediate code from the AST, also performing type check-
ing. This will be the topic of Lab 3.

2 Source language

First, we have to define the language we are compiling. We’ll be implementing a subset of C
called functional C. The complete syntax is described in K&R, but we won’t be using the whole
language. The main parts that are missing are the following. All of these are implementable,
but we will omit them to keep the compiler simpler.

• no switch statements,

• no labels or goto statements,

• no declaration modifiers like long, unsigned, static, etc.,

• no void type,

• no explicit coercions, like (int *) malloc(4),

• no functions with a variable number of arguments, like printf,

• no array or struct initializers,

• no union types,

• no do loops.

We also impost some additional semantic restrictions to make things easier.

• Structures must be defined before being used. That is, the following code is acceptable:

struct t {
int i;

};

struct t x;

1

However, the following code would be rejected if struct t is not defined.

struct t x;

If you like, you may also choose to reject the following code.

struct t *x;

• We will treat struct definitions as typedefs (like in C++). The following code is accept-
able.

struct IntList {
int i;
IntList *next;

};

• No struct definitions in parameter lists. The following code may be rejected:

int f(struct t { int i; } x)
{

return x.i;
}

However, we will be adding two features to make the language (semi) functional. First, we will
allow arbitrary nesting of function definitions. We may, or may not, allow inner functions to be
passed as arguments and returned from functions. We’ll see as the term goes along. Second,
every expression will return a value (although the value may be useless). In particular, we will
not differentiate between the if statement, and the test?expr : expr expressions. Statement
blocks like {s1; s2; . . . ; sn} will evaluate the statements s1, . . . , sn in order and return the value
of the last one. The empty {} statement block will return 0.

We now define the language in more detail, based on K&R.

2.1 Lexical converntions

2.1.1 Comments

Comments begin with the characters /* and are terminated with */. Any text is allowed in a
comment, but comments can’t be nested.

2.1.2 Identifiers

Identifiers (for variable, type, and function names) are a sequence of letters and digits, starting
with a letter. The undescore _ counts as a letter.

2.1.3 Keywords

The following words are used as keywords.

break char else float
for if int return
sizeof struct typedef while

2

2.1.4 Constants

• character constants have the form ’c’ where c is a single character, or an escaped char-
acter:

{ \n is a newline

{ \t is a horizontal tab char

{ \’ is a single quote char

{ \" is a double quote char

You may implement the other escape sequences if you like.

• integers have the following form:

decimal [’1’-’9’][’0’-’9’]*

octal ’0’ [’0’-’7’]*

hex "0x" [’0’-’9’ ’a’-’f’ ’A’-’F’]*

• floating point constants have the usual definition. They contain either a decimal point, or
an exponent of the form [’e’ ’E’] (’+’ | ’-’)? decimal.

• string constants are have the form "s", where s is a sequence of characters, including
escaped characters.

2.2 Grammar

The grammar of the language is as follows. The typewriter font is used for terminals, the italic
font for non-terminals. The main complexity in the grammar is in declarations, which have lots
of forms (wouldn’t it be nice if it were so easy as “let x = e1 in e2”). A toplevel program (in a
.c file) contains a sequence of variable, function, and type definitions.

prog:
ε
| prog def

def:
var defs
| fun def
| type defs

var defs:
type specifier init declarator list ;

fun def:
type specifier declarator { stmt list }

type defs:
typedef type specifier declarator list ;

A type specifier is one of the builtin types, or a structure, or a type name that has been defined
using typedef.

3

type specifier:
char | int | float
| struct specifier
| typedef name

struct specifier:
struct identifieropt { struct declaration list }
| struct identifier

struct declaration list:
struct declaration
| struct declaration list struct declaration

struct declaration:
type specifier declarator list ;

Now, here is where it gets more complicated. In a declaration, the type of the declaration is
defined using stars, brackets, and parentheses in various incantations. How do you write the
type of a function that returns a function? That’s a good question. In any case, variable dec-
larations can also contain initializers after an equals = sign. An init declarator is a declaration
with a possible initializer. A declarator doesn’t allow the initializer.

init declarator list:
init declarator
| init declarator list , init declarator

init declarator:
declarator
| declarator = expr

declarator list:
declarator
| declarator list , declarator

declarator:
pointer direct declarator

direct declarator:
identifier
| (declarator)
| direct declarator [expr]
| direct declarator (parameter list)

pointer:
ε
| pointer *

Parameter lists add to the intrigue, because the parameter names do not have to be used in a
declaration (although they may). We’re going to force ANSI syntax in parameter declarations,
not the classical form. That is, we accept the code.

int incr(int i) { return i + 1; }

We don’t allow the following old-style code.

4

int incr(i)
int i;
{

return i + 1;
}

Here we go. An abstract declarator is a declarator with an optional name.

parameter list:
parameter declaration
| parameter list , parameter declaration

parameter declaration:
type specifier declarator
| type specifier abstract declaratoropt

abstract declarator:
pointer
| pointer direct abstract declarator

direct abstract declarator:
(abstract declarator)
| direct abstract declaratoropt [expropt]
| direct abstract declaratoropt (parameter list)

Now we get to the “easy” part: statements and expressions. Statements are things that end
with a semicolon. Expressions do not.

stmt:
;
| expr ;
| if (expr) stmt
| if (expr) stmt else stmt
| while (expr) stmt
| for (expr ; expr ; expr) stmt
| return expr ;
| break;
| { stmt list }
def

stmt list:
ε
| stmt list stmt

expr:
char | int | float | string | identifier
| preop expr
| expr postop
| expr binop expr
| expr . identifier
| expr binop = expr
| (expr)
| expr [expr]
| expr (expr listopt)

5

expr list:
expr
| expr list , expr

preop:
- | ! | * | & | ++ | --

postop:
++ | --

binop:
+ | - | * | / | %
| << | >> | & | | | =
| == | != | <= | >= | < | >
| && | ||

Note that this grammar is highly ambiguous. You will need to add precedence declarations to
get all the arithmetic, etc., to work out.

3 Checking out the code

Some of the code for this assignment will be provided for you. The distribution contains a
definition of a type for the AST, another Set implementation (this time using red-black trees),
a symbol table, and an interpreter.

We will be using CVS in this class to manage the distribution. CVS comes with most Linux
distributions, and its on mojave. There are also versions for Windows out there, but then you
should be shelling out the bucks and paying for Microsoft Cooperative Visual SourceSafe++
(MScvs++) (that’s a joke: you can get Windows versions of CVS from www.cyclic.com). CVS is
pretty easy to use. The idea is this: we keep a central repository of the compiler source. When
you want to build your compiler, you “check out” a copy of the compiler. You can work on your
copy. When we make changes to the central copy, you can merge those changes into your code
automatically.

This is a three-step process.

1. Login to the CVS server on mojave using the following command.

% cvs -d :pserver:cs134@mojave.cs.caltech.edu:/cvsroot login

It will prompt you for a password. The password is cs134b.

2. Go to the directory where you want to put the compiler, and check out your personal
copy.

% cvs -d :pserver:cs134@mojave.cs.caltech.edu:/cvsroot checkout fcc

IF everything works, this will print out a lot of messages, and leave you with a directory
called fcc, which contains subdirectories mk, mllib, and fc_ast. The mk directory con-
tains some Makefile stuff, the mllib contains utilities like a Set implementation, and
the Symbol module. The fc_ast directory is where you will do your work.

You can build the compiler by running the make program in the fcc directory.

3. Later, if you want to merge any updates we have made to your copy of the compile, you
would use the following command in the fcc directory.

6

% cvs update

You will get messages about the files you have changed. If you made changes to the same
places that we did, you may get “conflicts.” CVS will tell you where they are, and you will
have to edit them by hand to correct the problem. The conflicts are always delimited by
<<<< and >>>> brackets.

3.1 What’s provided

3.2 Red black set and Red black table

These are new implementations of the Set and Table modules. You will rarely access them di-
rectly. Usually, you will use the SymbolSet and SymbolTable modules defined in symbol.mli.

3.3 Symbol

The Symbol module implements identifiers. Identifiers (for variables, type names, etc.) are
ubiquitous in a compiler implementation, and it is useful to define some utility functions. We
want an abstract representation of identifiers, so that their creation is tightly constrained (we
don’t want to introduce new identifiers by accident). The main signature for the Symbolmodule
is as follows.

(*
* Representation of symbols.
*)

type symbol

(*
* Create a new symbol with the given name.
*)

val add : string -> symbol

(*
* Make a new symbol.
*)

val new_symbol : symbol -> symbol
val new_symbol_string : string -> symbol

The add function creates a new symbol from a string. The new_symbol function create new
symbols that are guaranteed to be different from all the other symbols in the program. We’ll
use these functions a lot in later stages to make up unique variable names.

Also, we define the SymbolSet and SymbolTablemodules here. We’ll be using the SymbolTable
a lot.

module SymbolSet : Set_sig.SetSig with type elt = symbol
module SymbolTable : Set_sig.TableSig with type elt = symbol

3.4 Fc ast type

This will be the main focal point of this Lab. Your goal is to reduce a program to an expression
of type Fc_ast_type.expr. This is what an expression looks like.

7

type expr =
IntExpr of int * pos

| FloatExpr of float * pos
| CharExpr of char * pos
| StringExpr of string * pos
| VarExpr of symbol * pos
| AddrOfExpr of expr * pos
| UArithExpr of uarithop * expr * pos
| UnOpExpr of unop * expr * pos
| BinOpExpr of binop * expr * expr * pos
| BoolOpExpr of boolop * expr * expr * pos
| SubscriptExpr of expr * expr * pos
| ProjectExpr of expr * symbol * pos
| ApplyExpr of expr * expr list * pos
| AssignExpr of binop option * expr * expr * pos
| IfExpr of expr * expr * expr option * pos
| ForExpr of expr * expr * expr * expr * pos
| WhileExpr of expr * expr * pos
| SeqExpr of expr list * pos
| ReturnExpr of expr * pos
| BreakExpr of pos
| VarDefs of var_init_decl list * pos
| FunDecl of symbol * ty list * ty * pos
| FunDef of symbol * var_decl list * ty * expr * pos
| TypeDefs of var_decl list * pos

3.4.1 Position information

Each expression contains a “position” value, so that compile-time errors can be printed sensibly.
The pos type is a 5-tuple.

(*
* Position contains:
* 1. filename
* 2,3. starting line, starting char
* 4,5. ending line, ending char
*)
type pos = string * int * int * int * int

The position argument specifies the smallest line/character range containing the expression.
The Fc_ast_utilmodule defines some useful functions on positions. The union_pos function
can be used to compute the characters spanned by two separate positions.

(*
* Combine two positions.
*)
val union_pos : pos -> pos -> pos

(*
* Position functions.
*)
val pos_of_expr : expr -> pos
val pos_of_type : ty -> pos

8

3.4.2 Basic expressions

The Int, Char, String, and Float expressions represent constants. A VarExpr represents a
variable.

3.4.3 Unary operators

There are several forms of unary operations. A UArithExpr is unary arithmetic for the ++ and
-- operators. The uarithop is one of four cases:

type uarithop =
PreIncrOp

| PreDecrOp
| PostIncrOp
| PostDecrOp

The UnOpExpr is also a unary operation. The unop is one of the following cases.

type unop =
UMinusOp (* Arithmetic negation *)

| UNotOp (* Logical negation *)
| UStarOp (* Pointer dereference *)

3.5 Binary operators

There are three kinds of binary operations. Normal arithmetic uses the BinOpExpr. The binop
is one of the following.

type binop =
PlusOp (* + *)

| MinusOp (* - *)
| TimesOp (* * *)
| DivideOp (* / *)
| ModOp (* % *)
| BAndOp (* & *)
| BOrOp (* | *)
| BXorOp (* ˆ *)
| LShiftOp (* << *)
| RShiftOp (* >> *)
| EqOp (* == *)
| NotEqOp (* != *)
| LeOp (* <= *)
| LtOp (* < *)
| GeOp (* >= *)
| GtOp (* > *)

C also allows these binary operations in an assignment statement, like x += y. Assignments
use the AssignExpr form, which takes an optional binary operator.

The Boolean operations are handled separately with the BoolOpExpr. The definition of boolop
is the following.

9

type boolop =
LAndOp (* && *)

| LOrOp (* || *)

3.6 Projections

Array subscripting uses the SubscriptExpr form, which takes an expression for the array, and
another for the subscript. Structure projection uses the ProjectExpr form, with an expression
for the structure, and another for the label.

3.7 Control operations

The SeqExpr ([e1; ...; en], pos) represents a compound statement { e1; ...; en; }.

The IfExpr (e1, e2, Some e3, pos) is a conditional expression eith an else statement.

if(e1) e2 else e3

If the third expression is None, the if-statement has no else case.

A ForExpr(e1, e2, e3, e4, pos) is a for loop.

for(e1; e2; e3)
e4

The WhileExpr(e1, e2, pos) is a while loop.

while(e1)
e2

The BreakExpr is a break statement.

3.7.1 Functions

Functions are called with the ApplyExpr(f, args, pos) form. The ReturnExpr (e, pos)
is a return e statement.

3.7.2 Declarations and definitions

There are three kinds of declarations. “Variables” are declared with the VarDefs form, which
list the variable name, it’s type, and an optional initializer.

type var_init_decl = symbol * ty * expr option * pos

Functions are declared with a FunDecl (f, params, ty, pos), where ty is the type of the
values returned by the function, params are the type of the arguments, and f is the function
name. If you like, you may use the VarDefs form instead for function declarations.

Functions are defined with the FunDef (f, formals, ty, e, pos) form. ty is the type of
values returned by the function, formals is the formal parameter list, e is the function body,
and f is the name of the function. The formal parameters are a list of variables and types.

10

type var_decl = symbol * ty * pos

Types are defined with the TypeDefs form, which specifies a list of type variable and their
corresponding definitions.

3.7.3 Types

C has a simple type system. Here is the complete definition for types.

type ty =
TypeChar of pos

| TypeInt of pos
| TypeFloat of pos
| TypeId of symbol * pos
| TypeArray of ty * expr option * pos
| TypeStruct of ty_fields * pos
| TypeFun of ty list * ty * pos

The TyChar, TyInt, and TyFloat correspond to the char, int, and float types. TypeArray
is used for both pointers and arrays, a value of type TypeArray (ty, e, pos) is a pointer
to a value of type ty. The expr option is an optional array bounds specifier (used mostly in
initializers). For instance, in a declaration of the form int a[10], the type of a would be

TypeArray (TypeInt pos1, IntExpr (10, pos2), pos3).

The TypeId (v, pos) form refers to a type defined with typedef, or one of the built-in types
char, int, or float.

A TypeStruct (fields, pos) defines a struct. The fields is a list of labels and their types.

The TypeFun (ty_args, ty_result, pos) is the type of a function. The ty_args is a list
of the types of the arguments (the list may be empty), and the ty_result is the type of values
returned by the function.

3.8 Other files

There are sveeral more files you will find useful. The Fc_ast_eval module defines an in-
terpreter for evaluating expressions. The Fc_ast_util defines some functions for printing
expressions, and the Fc_ast_exn module defines some common exceptions.

It is not possible to make the parser totally functional. The Fc_ast_state module is used to
keep track of some the the necessary state, including the current position in the file, and a set
of symbols defined using typedef.

4 What you have to do

The distribution contains (very) incomplete versions of the lexer (fc_ast_lex.mll) and the
parser (fc_ast_parse.mly). In this assignment, you will complete the implementation of these
two files.

You should have at most one shift/reduce conflict (for the if statement), and you should have
no reduce/reduce conflicts. Your grammar should be complete for the subset of C that we have
defined.

11

Your compiler should correctly parse and evaluate the test1.c and test2.c files.

5 What to turn in

You should turn in your entire fc_ast directory in your submit/lab2 directory on mojave
(you should probably keep a copy in your CS account too). IF you are working in a group, only
one of you should do the submission, and you should send mail to cs134-admin to tell us who
the group is. If you had to modify anything in the mllib directory, include your changes.

In addition, you should include the following.

• A README file explaining what you did, how it works, and whether you had any problems.

• A DIFF file generated using the command cvs diff in the fc_ast directory. If you like,
you can insert this into the README file, with brief explanations of what you changed.

• The files test1.ast and test2.ast generated using your compiler with the -print_ast
option.

% ./fcc -print_ast test1.c > test1.ast
% ./fcc -print_ast test2.c > test2.ast

• Program output of the test runs. Use the following commands.

% ./fcc -eval test1.c -- test1 10 > test1.out
% ./fcc -eval test2.c -- test2 > test2.out

12

