
CS134b Homework #1
January 8, 2001 Due January 15, 2001

1 Splay trees

One of the most important data structures used in compilers are sets and tables of arbitrary
elements. For example, when we do type checking, we will need a table that contains the type
of each bound variable. This table can be used both to check that the variable is being used
properly, and it can also be used to check for unbound variables.

Since sets and tables are used so frequently, their implementation has a major impact on the
performance of the compiler. We need an efficient, functional table implementation.

One suitable data structure is a tree representation. For this assignment, we’ll implement
functional splay trees. This description is taken from Kozen, “The Design and Analysis of
Algorithms,” (Springer, 1991).

A functional splay tree is a data structure invented by Sleator and Tarjan. It is an ordered
binary tree S, that supports the following functional operations.

• member(i, S): determine whether element i is in splay tree S

• insert(i, S): insert element i into splay tree S (return a new tree S′)

• delete(i, S): delete element i from splay tree S (return a new tree S′)

All operations have an amortized cost O(logn). The most interesting thing about splay trees
is that, unlike red-black trees or 2-3 trees, it is not necessary to rebalance the tree after each
operation—it happens automatically.

The splay tree operations are all implemented in terms of a single, basic operation called splay.

• splay(i, S): reorganize the splay tree S so that element i is at the root if i ∈ S, and
otherwise the new root is either

maxk∈Sk < i or mink∈Sk > i.

All of the other operations can be implemented in terms of splay.

• member(i, S): call splay(i, S) to bring i to the root if it is there, then check the root
against i. The result of the splay should be saved.

• insert(i, S): call splay(i, S) to produce a new tree S′. If i is not at the root, create a new
root node labeled i, and split S′ to produce the children.

• delete(i, S): call splay(i, S) to bring i to the root if it is there; then remove i and join the
two subtrees.

2 Implementation of splay

The splay operation can be implemented in terms of an even more elementary operation rotate.
Given a binary tree S and a node x with parent y , the operation rotate(x) moves x up and y
down, according to the following picture.

1



x

y

A B

C A

B C

x

yrotate x
rotate y

Note that the rotate operation preseves the inorder numbering of the tree.

To implement splay(x, S), we distinguish three separate cases:

1. If x has a parent, but no grandparent, we just rotate(x).

2. If x has parent y and a grandparent, and if x and y are either both left children or right
children, we first rotate(y) and then rotate(x).

3. If x has parent y , and a grandparent, and if one of x or y is a left child and the other is
a right child, we first rotate(x) and then rotate(x) again.

Here is an example of applying splay(1, S) to the following tree S:

case 2 case 2

10

9

8

7

6

5

4

3

2

1

10

9

8

7

6

5

4

1

2

3

2



case 2 case 2

10

8

8

7

6

1

4

5
2

3

10

9

8

1

6

74

52

3

case 1

10

1

8

96

7
4

52

3

1

10

8

96

7
4

52

3

Aplying splay 2 to the resuling tree yields:

1

10

8

96

7
4

52

3

2

1 8

10

94

3 6

5 7

Note that the tree seems to become more balanced with each splay operation.

3 Getting Started

You will need to use the OCaml module system to help with this assignment. You should use
splay trees to implement a module with the following signature.

3



module type SetSig =
sig

type elt (* type of elements in the set *)
type t (* type of sets *)

(* Create a new set *)
val create : unit -> t

(* Test for membership *)
val mem : elt -> t -> bool

(* Add an element to the set *)
val insert : elt -> t -> t

(* Delete an element from the set *)
val delete : elt -> t -> t

end

The type of elements is also defined as a module with a compare function. The compare
function takes two elt arguments and returns a) a negative number of the first argument is
smaller than the second, b) zero if they are equal, or c) a positive number if the first argument
is larger than the second.

module type EltSig =
sig

type elt (* type of elements *)

(* Comparison function *)
val compare : elt -> elt -> int

end

Your splay set implementation will be implemented as a functor that takes a module of type
EltSig, and returns a module with type SetSig.

module MakeSplaySet (Elt : EltSig) =
struct

(* Same type of elements *)
type elt = Elt.elt

(* Splay trees *)
type tree =

Leaf
| Node of tree * elt * tree

(* Have to use a reference cell to save result of splay *)
type t = tree ref

(* Splay operation *)
let rec splay x = function

Leaf -> Leaf
| Node (left, y, right) ->

...

(* Membership *)
let mem x s =

let s’ = splay x !s in

4



let found = (* check if x is the root *) in
s := s’;
found

...
end

The type of splay trees (t) uses a reference cell. You should use this cell to save the result of
the splay after a mem operation. Note that the set will still appear functional, since the splay
operation does not change the set membership.

The functor has to be declared with a sharing constraint. The splay_set.mli file will contain
a declaration like this.

module MakeSplaySet (Elt : EltSig)
: SetSig with type elt = Elt.elt

4 What to turn in

You should place the following in your submit/lab1 directory on mojave (contact the TAs if
you don’t have an account).

• A README file that describes your implementation.

• The splay_set.mli and splay_set.ml files that implement the splay trees.

• A test.ml file that defines a test program for your splay set.

5


