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Abstract 

 
A previous paper (Hopfield and Brody (2000) Proc. Natl. Acad. Sci. USA 97, 13919-
13924) described a network of simple integrate-and-fire neurons that contained output 
neurons selective for specific spatiotemporal patterns of inputs; only experimental 
“results” were described. We now present the principles behind the operation of this 
network, and discuss how these principles point to a general class of computational 
operations that can be easily and naturally carried out by networks of spiking neurons. 
Transient synchrony of the action potentials of a group of neurons is used to signal 
‘ recognition’ of a space-time pattern across the inputs of those neurons.  Appropriate 
synaptic coupling produces synchrony when the inputs to these neurons are nearly equal, 
while leaving the neurons unsynchronized or only weakly synchronized for other input 
circumstances.  When the input to this system comes from timed past events represented 
by decaying delay activity, the pattern of synaptic connections can be set such that 
synchronization occurs only for selected spatiotemporal patterns.  We show how the 
recognition is invariant to uniform time-warp and to uniform intensity change of the input 
events.  The fundamental recognition event is a transient collective synchronization, 
representing ‘many neurons now agree,’ an event that is then easily ‘detected’ by a cell 
with a small time constant.  If such synchronization is used in neurobiological 
computation, its hallmark will be a brief burst of gamma-band EEG noise when and 
where such a recognition event or decision occurs. 
 
Introduction 
 
How is information about spatiotemporal patterns integrated over time in order to 
produce responses selective to specific patterns and their natural variants? Such 
integration over time is a fundamental component of sensory perception. Information 
must of course also be integrated over space, but this problem is much better understood: 
for example, visuospatial information is initially encoded in the retina through a ‘ labeled 
line’ code (1) whereby individual retinal ganglion cells respond only to stimuli in a 
restricted part of visual space (their receptive field). Integration over space is then a 
straightforward matter of converging inputs from cells with different receptive fields. In 
contrast, the fundamentals of how temporal information is represented and how it can be 
integrated remain mysterious. This is particularly true for timescales longer than a few 
tens of milli seconds, at which point transmission delay times can no longer be used as 
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biologically plausible building blocks for bringing information from different times 
together (2, 3). Integration over times on the order of 0.5 seconds or longer, in 
biologically plausible networks, is a principal focus of our report.  The principles 
underlying such integration over time in fact belong to a broader and more general class 
of computations. 
 
The ideas will be ill ustrated by studying a particular case of recognizing spatiotemporal 
patterns of events. Short spoken words can be encoded into such a representation, by 
detecting features in different frequency bands of a spectrogram (4, 5). The specific 
example used in the previous companion paper (‘paper I’ , (6)) and used here again, will 
be that of recognizing the spoken word ‘one’ after it has been encoded into a 
spatiotemporal pattern of events. Numbering of Figures will start with Figure 7, 
continuing from paper I. 
 
 
The natural coding of time in decaying delay activity.  Neuronal responses to transient 
stimuli decay with a wide variety of different timescales, ranging from tens of 
milli seconds to tens of seconds. At the longest timescales, the activity is often referred to 
as ‘delay activity’ (7, 8, 9, 10). When such activity decays with time, the ratio of the 
present activity to the activity at initiation implicitly encodes the time that has elapsed 
since the initiating event occurred.  Thus, time, on many different scales, is naturally if 
implicitly encoded at many levels of processing in the nervous system.  
 
Consider a set of decaying activities where the initial firing rate for each neuron is the 
same for all events that are able to trigger that neuron. Then the neuron’s firing rate is, by 
itself, an implicit measure of time since the triggering event. We will describe how a 
network of spiking neurons can carry out computations on such a representation of time. 
In the discussion section, we will briefly describe how to generalize to the situation 
where the initial firing rates are not stereotyped. 
 
 
Recognizing a spatio-temporal pattern 
 
We wish to recognize whether a pattern of space-time events described by a set of times ti 
lying within an interval of ~0.5 sec. approximately match with a model of events tm

i.  
Only relative time differences within each pattern are important—the overall time at 
which the test pattern of events occurs is arbitrary. We will refer to each index i as an 
‘ input channel’ . Consider a pattern composed of three events, one in each of three 
channels. One event occurs at 0.075 sec, one at 0.150 sec, and one at 0.300 sec. Let each 
of these events trigger a set of currents with a variety of fixed decay rates, ill ustrated in 
Fig 7a. Now suppose that this pattern (0.075, 0.150, 0.300) is the target pattern to be used 
as a model. It is possible to select three decay rates, one per channel, that generate 
currents that reach almost the same level at some time tr (rings in Fig. 7a). There are 
many possibili ties for tr, but having picked tr (larger ring in Fig. 7a), the set of decay rates 
is unique (selected currents shown in Fig. 7b). When the pattern of input event times is 
close, but not identical to the target pattern, the selected currents will be triggered at 
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times such that the convergence neck is not a point but is still small (Fig 7c). When the 
input pattern has no relationship to the target pattern, there is no such convergence (see 
Fig 7d). Thus, the degree of convergence of these currents is an indicator of degree of 
similarity to the original pattern. 
 
How can the convergence of current levels be detected? Suppose each of the selected 
currents drives an integrate-and-fire neuron. Synaptic connections between neurons that 
have similar firing rates often produce synchrony between the action potentials of these 
neurons (11,12). When the input pattern matches the model, the currents driving the 
neurons will converge at some point in time, the firing rates of the driven neurons will 
then be similar, and synaptic coupling between neurons should lead to strong transient 
synchronization of their action potentials near this time. When the input pattern is very 
different from the model, there will be no convergence of input currents and firing rates, 
and therefore there will be little synchronization. Transient synchronization of neurons 
with convergent firing rates is thus the fundamental recognition event. The precise degree 
of synchronization depends on how close together the firing frequencies are, on the 
strength of coupling between the neurons, and on how many neurons are involved.   
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Figure 7. Time-warp invariant convergence of decaying currents. a) Decaying currents triggered by events 
in three different channels, one at  0.075 secs, one at 0.15 secs, and one a 0.3 secs.  Responses for different 
channels are shown in different shades of gray. The rings identify points where three currents, one for each 
channel, converge. b) The converging currents for the three currents selected by the larger ring in panel (a). 
c) An input pattern that is similar to the target pattern. d) A temporal pattern very different to the target 
pattern. e) A time-warped version of the original pattern. 
 
Invariance with respect to some parameters is often a desirable feature of recognition 
systems (e.g. recognizing the identity of a face independently of its spatial scale, 
recognizing an odor independently of its overall concentration). The convergence of 
current levels contains a natural invariance. When the target pattern is rescaled in time 
(time-warped) and presented to the system, the selected currents converge (Fig.7e), albeit 
at a different common level. We have ill ustrated this point in Fig. 7 using linear decays, 
but, as we will now show, the result holds more generally, including exponential decays. 
A uniform time-warp by a scale factor s changes the intervals { t1 – t2, t2 – t3  …} to the 
pattern { s(t1 – t2),  s(t2 – t3  )} . Suppose that after an event at time ti, the currents that 
respond to this event with a variety of decay times τj are a function only of the variable (t 
– ti)/τj. That is, there is a universal form function f((t – ti)/τj) for the decaying currents, 
and the different decay rates are obtained by having different values of τj. For each input 
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channel i, we choose a decay time τi such that the currents from the different channels are 
all the same at time tr: (tr – ti)/τi   =  ( tr – t1)/τ1 for all i .  But for an input pattern scaled by 
s it is also true that (str – sti)/τi   =  (str – st1)/τ1 for all i , so the same set of currents, with 
the same decay rates, will again reach a point where they are all equal (although the time 
and level at which they meet will be different from the case s = 1). This result, which 
does not depend on the form of the decay function f(), is what makes the time-warped 
example of Fig 7e still have a convergence, even though the warp-factor s is quite 
different from unity. Degree of convergence of current levels is a time-warp invariant 
indicator of degree of similarity to the original pattern. 
  
The recognition can be described in terms of a pattern match of times of occurrence ti 
with a model for these events tm

i.  The match is carried out including an arbitrary scaling 
factor s and an arbitrary shift tshift.  Events present in the model but missing in the 
presented pattern merely decrease the size of the signal at recognition, and thus require a 
better match of other times to generate recognition.  When most of the events agree on 
tshift and s, events that disagree greatly are essentially ignored, viewed as not even 
occurring.  The essence of the algorithm implemented can be described mathematically 
by finding the maximum over s and tshift of the function 
 

recognition score =  Σi  W( (sti – tm

i – tshift)
2 + W2)-1 

      
The sum is carried out over all channels i that contain events both in the model and in the 
incoming pattern.  W is a width parameter determined by the strength of the synaptic 
coupling in the synchronizing system.  The particular functional shape of the terms in the 
sum is arbitrary.  This form of recognition score is readily extended to more elaborate 
systems with multiple events within a single channel, to weighting events differentially, 
and to having events that are inhibitory in character. 
 
 
Experiments on speech 
 
Paper I was a demonstration of these ideas applied to speech. There, sound waveforms 
were transformed into spatiotemporal patterns of events by detecting onsets, offsets, and 
peaks of power within various frequency bands. There were 40 different input channels, 
each of which corresponded to a particular detector type (i.e. onset, peak, or offset) and 
frequency band combination.  An event on any one of these channels was analogous to 
one of the events shown in Fig 7a, and triggered the start of a set of slowly decaying 
currents, of which there were 20 for each channel. With 40 channels, this made a total of 
800 different input lines. The full set of 800 such inputs were labeled in paper I as ‘ inputs 
from area A’. Most speech files had events on all 40 channels, so typically all 800 input 
lines were activated in response to any single speech file. Each one of these 800 input 
currents was used to drive a single excitatory and a single inhibitory cell in a pool of 
otherwise identical integrate-and-fire neurons that were labeled in paper I as ‘α 
(excitatory) and β (inhibitory) neurons of area W’. The smooth input currents from area 
A can each be thought of as the sum of the inputs from a large set of closely similar 
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unsynchronized neurons. Responses of single area A neurons were ill ustrated in Fig. 4 of 
paper I. 
 
‘Training’ the network to recognize a particular template of spatiotemporal events 
consisted simply of selecting a set of αand β neurons that would have converging firing 
rates in response to the target template (analogous to selecting the large ring in Fig. 7a), 
and creating mutual all-to-all connections within this set.  Importantly, the strength of 
excitation and inhibition in the all-to-all coupling within this set was balanced, so that 
even when many neurons were driven by speech, the net input current to a cell came 
chiefly from its input from area A. All the excitatory connections were made equally 
strong, and all the inhibitory connections were made equally strong. The fast excitatory 
synapses and longer-duration inhibitory synapses then led the neurons to synchronize in 
response to the target template. These neurons also synchronized in response to input 
patterns that were similar though not identical to the template, and in response to time-
warped versions of the template (Fig. 8a,b). Time-warp invariance was a key component 
of the abili ty to generalize from a single example. In contrast, stimuli that were 
significantly different from the target template did not lead to convergence of the 
neurons’ firing rates (Fig. 8d), and in this case the neurons did not synchronize strongly 
(Fig. 8e). The selected set of excitatory and inhibitory neurons was also connected 
directly to an output neuron (labeled as a ‘γ’ cell in paper I). When the neurons 
synchronized, the γ cell received a high-amplitude oscill ating input current that drove it 
to fire in a characteristic burst of 30-60 Hz (Fig 8c). When the neurons synchronized 
weakly or not at all, the γ cell was not driven to fire (Fig. 8f).  
 
Very strong oscill atory drive can generate close doublets of action potentials on each 
‘cycle’ , with separations little more than the absolute refractory period.  We have seen 
such doublets in all cell types. 
 
Possible enhancements. Two enhancements to the system, one having to do with 
multiple events and one with the role of negative evidence, improve the performance of 
the system both on speech and probably in other pattern recognition problems. For 
simplicity, we refrained from implementing these enhancements in Paper I. In the system 
described, once a cell in area A was launched on its stereotyped response, it continued 
that response until the end of its decay. A second event of the same type occurring within 
the response time of this cell was simply ignored.  The system functions better when the 
information carried by second or further events is not lost, even if they occur within the 
response time.  This can be achieved by having a pool of cells of each type in area A, 
with each having a small probabili ty (for example, 0.3) of being activated when its 
appropriate feature arises.  In this case, two different sets of neurons will be (statistically) 
turned on at two different times by two features of the same type, even though they occur 
close together in time.  When two features of the same type occur within a given word, 
both features can then contribute to the recognition. 
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Figure 8. Synchronization indicates recognition of an input pattern that is similar (within time warp) 
version of the target pattern. a) The 40 currents from area A that converge in response to the target 
template. Here they  almost converge near time=0.6 secs, in response to a pattern similar but not identical 
to the target. b) Spike rasters of responses of 160 α or β neurons. Each dot represents an action potential, 
each row corresponds to a single neuron. Forty of the neurons, shown below the gray line, belong to the 
selected set, driven by the currents shown in panel (a), that corresponds to the target pattern. Note the 
neurons’ synchronization. The other 120 neurons (above gray line) are randomly drawn from the rest of the 
population of α and β neurons. c) Intracellular potential of the γ neuron that receives input from the 
selected set of α and β neurons. The γ neuron spiking threshold has been set to infinity here, to allow full 
observation of the synapticall y-driven membrane potential; γ neuron firing threshold is normally –55 mV 
(horizontal dashed line). Synchronized input leads to strong oscill ations and many threshold crossings. 
Random fluctuations in the oscill ation amplitude can lead to occasional ‘missing’ γ spikes (arrow). d,e,f) 
Same format as panels a,b,c, in response to a non-target pattern. d) Input currents do not converge. e) 
Neurons synchronize only weakly. f) γ cell does not fire. 
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A second enhancement is in regard to the fact that events at particular times may 
sometimes be evidence against recognition of a target pattern. For example, a particular 
event occurring at a particular time might be characteristic of a pattern that is similar to, 
but different from, the target. By using slightly modified inhibitory synaptic biophysics, 
such negative contributions to the recognition computation can easily be included in the 
framework we have described.  Let the new inhibitory synapses have a fast, almost 
instantaneous rise time similar to the excitatory rise time, yet let them still have a slower 
decay constant of 6 ms. Keeping total excitation and inhibition currents balanced means 
that the initial peak current due to simultaneously activated excitatory and inhibitory 
synapses will still be excitatory. This was the key feature that enabled synchronization, so 
the network of cells will still synchronize. Now let the α and β cells that correspond to a 
negative evidence event receive the usual input from the other, positive evidence cells. 
These negative evidence cells will then synchronize with the positive evidence cells if 
their input from area A drives them at the ‘ right’ time.  Finally, connect the negative 
evidence β cells to the γ-cell and the positive evidence cells with the fast rise time 
inhibitory synapses described above, but connect the negative evidence α cells to the γ-
cell and positive evidence cells with slow excitatory synapses (e.g. NMDA synapses). 
Then the fast part of the synaptic current received from the synchronized negative 
evidence α−β cells will be inhibitory. This will both make the γ-cell less likely to fire and 
inhibit the synchronization of the positive evidence cells.  This enhancement is possible 
because in a system of synchronizing neurons, details of synapse time response and 
membrane time constants can strongly affect the computation that will be performed.   
 
We have carried out explorations that suggest that with these two enhancements, 
interesting discrimination is achievable even with connected speech, and with speech-like 
noise in the background. 
 
 
 
 
 
Properties and extensions of the recognition system. 
 
Multiple patterns.  Embedding multiple patterns within the same network of α and β 
neurons is straightforward. In paper I, we ‘ trained’ for the template that corresponded to 
an example of the spoken word ‘one’ . We then in addition trained for 9 other, randomly 
chosen, templates (lists of 40 times drawn independently from a uniform distribution in 
the range [0, 0.5]). This was done by simply adding the synaptic connections between α 
and β cells that corresponded to each successive template if the connections did not 
already exist. At the end of this process, each α or β neuron was a member of the selected 
set of, on average, 1.45 target patterns. (The final number of α and β neurons in the 
network was less than 800 because neurons that did not participate in any patterns were 
deleted.)  Nevertheless, when testing with one pattern, the overlap between the different 
sets did not cause a disabling spread of synchronization to neurons participating in 
patterns other than the one presented (see rasters of neurons above gray line in Fig. 8b).  
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In a small set of exploratory experiments, we have successfully embedded 25 random 
patterns in the network, so each α or β cell participated, on average, in the memory of 
more than 2 patterns. In this regime, excitatory and inhibitory currents due to the 
numerous recurrent synaptic connections between α or β neurons are larger than the input 
currents from area A, yet the cells still synchronize selectively for their input patterns.  
The capacity is, however, limited; in the limit of an infinite number of embedded 
patterns, all α and β cells are connected to each other, and the neurons synchronize under 
all circumstances. The transition between the two regimes (selective synchronization in 
response to specific patterns, ‘epileptic’ synchronization in response to all patterns) 
appears to have the nature of a phase transition. We also tried selectively deleting the few 
α or β neurons that, in any particular instantiation of the network, randomly happened to 
participate in the largest number of patterns. When this was done, the number of 
embeddable patterns per cell that could be stored before reaching the epileptic regime 
was made substantially larger. Thus, the topology of the patterns and connections 
between them seems highly relevant to the capacity of the network. 
 
Extensions. The properties of the system we have described do not depend critically on 
the details of its construction. In this sense, there is a large ‘space’ of neural circuits with 
properties similar to the ones demonstrated.  For example, the system described had a 
balance between excitation and inhibition, achieved by having both excitatory and 
inhibitory cells driven from area A.  However, an equivalent balance can be achieved in a 
neural circuit in which area A drives only α cells, and the inhibitory β cells receive input 
only from α cells.  We have shown in simulations that such a system works as well as the 
one described, even when using cell properties such that the inhibitory cells show little 
synchronization.   
 
Balance prevents the corruption of the basic input information arriving at the α and β 
cells (i.e. the input currents from area A) by the recurrent synaptic inputs that are 
essential to generate the collective synchronization. Balance between excitation and 
inhibition is important in the present network when multiple patterns and multiple γ cells 
are to be supported by the same set of α and β cells. (An unbalanced system may also be 
useful in some contexts.) Balanced excitation and inhibition has been proposed as the 
mechanism behind the irregular firing of cortical cells (13,14,15). Brief explorations with 
large networks have shown that even at large noise levels that lead to characteristically 
irregular firing of single α−β cells, network-level collective synchronization, practically 
undetectable at the single or paired neuron level, can still occur. 
 
In paper I and our multiple pattern experiments described above, all excitatory synapses 
from α cells onto α and β cells were equally strong, and all inhibitory synapses from β 
cells were equally strong. Similar simplifications were made in connections to γ cells.  
This arrangement was arbitrary. That large random variations in synaptic strengths (see 
paper I) did not affect the recognition is a strong indicator that the pattern of connections, 
not the detailed synaptic strengths, is the key to pattern-selective synchrony. Fine-tuning 
for optimality would involve synapses having a range of strengths. 
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Discussion 
 
To learn to recognize a pattern, the synaptic strengths must change as a result of pre-and 
post-synaptic cell activity.  The kind of relationship between synapse change and the 
neuronal activity that is desirable for recognizing a new pattern is closely related to 
known neurobiological temporal learning protocols.  If α and β cells are connected to γ 
cells with initial excitatory and inhibitory synapses, the γ-cells will not be driven until the 
α and β cells develop collective synchrony.  When this happens, γ cells will fire just after 
the α cells do, and plasticity protocols that have been described experimentally (16, 17) 
will l ead to strengthening and pruning appropriate for α to γ cell synapses.   For 
developing appropriate α to α connections, slightly more complex learning rules are 
necessary: for example, a synaptic enhancement requiring the occurrence of 2--4 near-
coincidences (but not on average, by a single near-coincidence) between consecutive 
action potentials of the pair of cells, with both cells firing each time, over a time period 
of ~0.1 sec., would be very powerful. This event will be common when two cells are 
firing at almost the same rate, would be generated by the temporal crossing of the firing 
rates of a pair of cells, and is unlikely otherwise. Synaptic modifications due to crossing 
firing rates seem not to have been studied experimentally. 
 
The stereotyped response strengths used in paper I, where area A neurons responded with 
the same initial firing rate regardless of the intensity of the event that triggered them, is 
not common in biology, but is also not necessary in the present system.  If the initial 
amplitudes of the signals from area A are a function of the salience of the events, all 
scaling together when the events are more salient, the convergence properties that led to 
synchronization and pattern selectivity are preserved.  Such a system has two scalar 
invariants to its recognition process, invariance with respect to time-warp and invariance 
with respect to pattern salience.  Cleverer encodings of signals into responses of area A 
cells could lead to the abili ty to generate convergence and transient synchronization with 
more complex invariants. 
 
The mammalian olfactory bulb shows strong γ-band local EEG behavior (18), and there 
is evidence in lower systems for the role of synchrony and of oscill ation in olfactory 
pattern discrimination and learning (19).  In mammals each of ~2000 glomeruli has an 
input that is proportional to the time-dependent odor strength during a sniff, with a 
proportionality coefficient that depends on the type of receptor cells which impinge on 
that glomerulus.  To form a collective synchronizing system of the type described here in 
response to a time-varying input (20), it is essential to link together mitral cells which 
transiently receive the same strength of synaptic input.  A given odor will drive different 
glomeruli with different strengths.  These two facts need not contradict if the different 
mitral cells driven by a single glomerulus have systematically different responses to the 
drive of that glomerulus, either in the current which they receive from that glomerulus or 
in their threshold characteristics.  The 1:25 ratio of glomeruli to mitral cells would then 
have the computational function for olfaction that the 20 different time-decays in area A 
have for the speech problem.    
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There is potential for analytical treatment of the transient synchronization in special 
cases. An ‘effective field’ treatment, exact only in the limit of infinite N, will be 
quantitatively useful for large but finite N, the biological case, and has some prospect for 
treating the real dynamical problem in which the distribution of input currents is broad, 
then narrows, and returns to being broad.  For studying such effects, the system can be 
simplified thorough amalgamating α and β cells into a single cell type with a synaptic 
current that sums the EPSC and IPSC.  Indeed, the simplest biological network of this 
sort may be a set of mutually connected inhibitory neurons coupled by synapses and by 
gap junctions (21). 
 
 
Conclusion  
 
Many possible roles have been suggested for synchrony (19, 22, 23, 24, 25). Here we 
have focused on the description of a mechanism by which transient synchrony may arise 
and on a computational algorithm that exploits this mechanism. The fundamental 
observation made in this paper was that since weakly-coupled neurons with similar firing 
rates can easily synchronize (11, 12), neurons with transiently similar firing rates can 
transiently synchronize, and that this transient synchronization can serve as a powerful 
computational tool. Detecting transiently similar firing rates is an operation that is very 
naturally and easily carried out by networks of spiking neurons: simple mutual 
connections between neurons suffice to carry it out. The resulting collective 
synchronization event, which might be described as a ‘MANY VARIABLES ARE 
CURRENTLY APPROXIMATELY EQUAL’ operation, is a basic computational 
building block. An understanding of transient synchrony as a computational building 
block allowed the design of a network that displayed time-warp invariant spatiotemporal 
pattern recognition of real-world speech data. The recognition event in this network was a 
collective transient synchronization, effective in repeatedly driving an otherwise silent ‘γ’ 
neuron. Stimulus-dependent synchrony in computational networks of neurons or neuron-
like elements has been previously described (e.g. ref. 26), but generally with respect to 
static patterns that do not involve temporal integration or transient synchrony. 
 
Just as integrate-and-fire neurons can be thought of as naturally implementing a fuzzy 
‘AND’ or a fuzzy ‘OR’ operation (depending on the settings of the cell’s parameters), 
networks of appropriately configured spiking neurons naturally implement a fuzzy 
‘MANY ARE NOW EQUAL’ operation. This operation can serve many computational 
roles, in addition to the one demonstrated here. For example, it could be used to segment 
two odors that fluctuate independently in time (20), or the output of the γ cells themselves 
could be turned again into a smooth current, on which further computational operations 
could be carried out. The ‘MANY ARE NOW EQUAL’ synchronization operation may 
be as fundamental and general a computational building block, at the level of spiking 
neuron networks, as the firing threshold is in single spiking cells. 
 
Networks of neurons where excitation and inhibition are roughly balanced, often 
described in the computational neuroscience literature (13,14,15), can easily carry out 
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computation by transient synchronization on top of, and separately from, the encoding of 
information in the neurons’ firing rates. 
 
When neurons are arranged in an orderly fashion, synchronized activity in a cell type is 
expected to produce a burst of gamma-band EEG.  One could easily be led to wonder to 
what extent the frequently observed local burst of gamma activity (27) can be associated 
with decisions of the type described here. 
 
Connectionist modeling of higher nervous function is often based on non-spiking units, 
the characteristics of which are inspired by approximate rate-model properties of single 
neurons. Such units are typically used to represent many individual neurons, averaged 
into a single 'effective processing unit'. In contrast, the collective effects and decisions we 
have presented here cannot be described in a similar fashion. That is, the higher-level 
mathematical description of a decision by a group of synchronizing neurons bears no 
resemblance whatsoever to the mathematical description of a single neuron. 
Hydrodynamics serves as a useful analogy: we know that the mathematics of 
aerodynamics relevant to airplane design cannot be described in terms of huge 'effective 
molecules' colli ding with an airplane wing. Similarly, we wonder how much of higher 
nervous function will be usefully describable with the mathematics of sigmoid units as its 
basis. 
 
 
Appendix 
 
How did the single unit results of paper I point the way?  We have claimed that the 
‘experimental’ information presented in paper I was sufficient to deduce the principles of 
operation behind the system.  We now describe one deductive chain that leads ineluctably 
from the experiments to the principles. Examining the implications of the raw basic data, 
and not merely relying on a conventional and incomplete summary of that data (in this 
case, the PSTH), is key to finding the computing principle of this system. 
 
 
What could be responsible for the spike rasters of a γ cell in a recognition event, 
consisting of a slow burst of 3-8 action potentials at 30-60 Hz?  1) Bursting could be an 
intrinsic cellular property due to complex biophysics.  2) The input current could briefly 
rise from below threshold to a nearly fixed plateau.  Or 3) the input current could itself 
contain the rhythm, and have a strong 30-60 Hz oscill ation. 
 
Since the γ neurons are simple ‘ leaky integrate-and-fire’ neurons, they do not have an 
intrinsic abili ty to generate bursts making 1) impossible.  The slow bursts must be due to 
synaptic currents. A comparison of the different rasters of a single file shows 
compelli ngly that 2) cannot be the case.  Most of the spikes of one raster correspond well 
to spikes in another if small shifts are made in the time axis, except that some of the 
spikes appear to be missing. Figure 9 shows 6 spike rasters from Fig. 1a (above) and 6 
rasters from Fig. 1c (below), time-shifted by small arbitrary amounts into alignment. All 
of these spike trains are virtually identical except for occasional ‘missing spikes’ .  Noise 
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fluctuations in a fairly steady current would produce fluctuating intervals and a loss of 
registry between different rasters after a short time because of accumulated differences, 
rather than an appearance of missing spikes and doubled or even quadrupled interspike 
intervals.  These γ-cell spike rasters cannot be due to a nearly constant input current 
plateau plus noise.  
  

ms

time−aligned rasters

500 600 700 800

 
 
Figure 9. Aligned spike rasters from figures 1a and 1c. 
 
We are left only with the third possibili ty, which then must be true (28).  Given the size 
of excitatory EPSPs, the firing rates of the α-cells at the time of recognition, and the 
number of excitatory synapses impinging on a γ-cell, above chance overlaps of EPSPs are 
necessary to drive a γ-cell.  The burst must be due to almost periodic pulses of total 
synaptic input currents due to roughly synchronous, almost periodic spiking of the α and 
β cells that drive this γ cell.  When an utterance is not recognized, the synchronization of 
α and β activity must be at a lower level. Missing spikes are now logical in the presence 
of noise fluctuations, for the rhythm of the transient coherent oscill ation in the α and β 
system will continue even though its amplitude fluctuates (see arrow in Fig. 8c).  Given 
this observation, the entire question of how the system ‘computes’ must involve the 
collective synchronization of the subset of α and β neurons that drive a γ-cell. 
 
In order for α and β neurons to fire synchronously for more than one spike, their 
interspike intervals must be similar; therefore, the net input current to the two neurons 
must also be similar. This immediately suggests looking for crossings of the inputs from 
area A, as in Figure 7, and this in turn leads to reasoning that completes an understanding 
of the principles of operation of the system, including time-warp invariance.  
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