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Abstrad

Reaognition of complex temporal sequencesis agenera sensory problem that requires integration
of information over time. We describe avery smple ‘organism’ that uses novel neural
computational principlesto perform this task, exemplified here by recognition of spoken
monosyllables. The ‘organism’ is a network of very smple neurons and synapses, the experiments
are smulations. The network’ s recognition cgpabili ties are robust to variations aaoss peakers,
simple masking noises, and large variations in system parameters. The network principles
underlying recognition of short temporal sequences are gplied here to speed, but smilar ideas can
be gplied to aspeds of vision, touch, and olfadion. In this paper, we describe only properties of
the system that could be measured if it were ared biologica organism. We delay publication of the
principles behind the network’s operation as an intellectual challenge: the novel essential principles
of operation can be deduced based on the experimental results presented here done. An interadive
web site (http://neuron.princeton.edw/~moment) is available to allow realers to design and carry
out their own experiments on the ‘organism’.

Introduction

How does a brain integrate sensory information that occurs over atime on the scde of ~0.5
seonds, transforming the anstantly changing world of stimuli into percepts of a‘moment’ of
time? Thisisageneral problem essential to our representation of the world. In audition, the
perception of phonemes, syllables, or spedes cdls are examples of such integration; in the
somatosensory system, the feding of texturesinvolves sich integration; in the visual system, objed
segregation from motion and structure from motion require short-time integration; in the olfactory
system, sensing odors during a sniff involves temporal integration. Linking together recantly-
occurred information into an entity present ‘now’ is a fundamental part of how the percept of a
present ‘moment’ is constructed; a key issue in thisregard is how such integration over time can be
caried out using neural hardware.

We describe here asimple and very biologicdly plausible network of spiking neurons that
reagnizes ort complex temporal patterns. In so doing, the network links together information
spread over time. The network was designed using novel computational principles. It is cgpable of
broad generalization from a single example and is robust to noise. These cgabilities are
demonstrated here by considering the red-world problem of reagnizing a brief complex sound (a
monosyllable; seeFigure. 1). We dhose this representative but spedfic task becaise it is anatural
cgpability of our auditory systems. The task is well-defined and conceptually easy to describe, and



red-world datais available to exemplify the important problem of natural variabili ty and noise.

The objed here isto understand how high seledivity for spatiotemporal patterns can be obtained in
abiologicd system; the performance of this smple system as a word recognizer is of course far
worse than digital computer based commercial systems, but the comparison is not relevant.

In this paper, we describe the network by presenting only observations and experiments that would
have been performed on the network if it were ared biologica organism. Aswith ared organism,
we do not explicitly describe in this paper the principles underlying the network’s operation, but
merely the experimental fads that one can record about it; the principles of operation must be
deduced. In afew months, we will present in a second paper a full and explicit description of the
principle behind the design and performance of the system.

We have dhosen this unusual mode of presentation based on our own experience with the system.
We were surprised to find that the information described in this paper was sufficient to deducethe
principles on which the system works. Had this been ared biologicd system, we ourselves would
have been inclined to believe insteal that the seaet of the spedficity must lie in additional cell
types, cdlular biophysicd complexity, or other as-yet unmeasured fundamental properties, we
would have glossed over subtleties that adually clealy indicate how the system works, and we
would never have found the interesting principle on which the network computation is based.

How often have we been guilty of similar behavior in looking at data from neurobiology?

Probably often, from lad of pradicein interpreting data instantiating a new principle in an unusua
fashion. How often have others been guilty of smilar behavior? We cainot know; probably less
than ourselves. However, feding that some in the community might appredate an opportunity to
interpret the behavior of a system that is guaranteed to have no hidden components, we have
chosen to present in this paper only conventional ‘ experimental information’—conventional
information that we know is sufficient to derive the underlying computational principle and to
understand how the system computes. Someone who smply wants to be told the principle will find
that information in the seaond paper, to be published shortly after this one.

We will begin by describing the network’s complex pattern recognition behavior, and the firing
patterns of those neurons that are correlated with this behavior. We will then turn to the full
network, and describe its neuroanatomy (cdl types, synapse types, connedivity pattern),
physiologicd properties in response to acustic stimuli, and single-cdl properties as observed in
vitro. We will write & though the network were ared organism, asfar as the experimental
measurements are mncerned.

Behavior and eledrophysiological corr elates

In the particular network described here, a novel principle of computation that enables the network
to reaognize the spoken monosyllable “one,” as well as 9 other different patterns, has been
instantiated through a particular choice of network parameters. The method to determine the
parameters that enable reaognition of ead pattern is non-iterative, and requires information based
on only asingle example of the pattern to be recognized. Although the method is draightforward, it
is not the focus of our study and we will not describe it further, only noting that we believe the
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Fig 1 Extracdlularly recorded responses of a single y-type neuron to five different acoustic waveforms.
A noisy membrane arrent was added to every neuron in the smulation of the neuronal mathematics for
the ‘organism’, to simulate the noise due to aher inputs that would always be present in areal biological
system. Beforethe experiment, the network parameters were set using only a single exemplar of the
word ‘one’ spoken by speaker (a), plus sngle examples of 9 other different patterns (each recognized by
one of 9 other y neurons, not shown here.). @) Spike rasters, aligned in time to the start of the acoustic
waveform shown in the inset, in response to 8 different trials using an utterance of the word ‘one’ from
speaker (@) (not the training exemplar). Below the rastersis their corresponding peristimulustime
histogram (PSTH), smocthed by a Gaussan with a standard deviation of 12 msec They cdl begins
spiking near the end of the word. Tick marksin theinset correspond to 0 and 500ms. b) Sameformat as
pand A, for an utteranceof the word ‘one’ from a different speaker (b). ¢) Same format as panel A for a
‘on€’ spoken by speaker b in the presence of aloud tone at 800 Hz. The waveforms are markedly
different in a@),b) and c) yet they cdl respondstoall. d) Sameformat and uteranceasin panel a), but the
acoustic waveform has been reversed in time. €) Same format as panel @), for an utterance by speaker (b)
of theword ‘threg. Few or no spikes ocaurred in response to the waveforms of panelsd) and €). Other,
simil ar-sounding words (for example, ‘wonder’) occasionally causethe cél tofireaswell, indicating that
these output cdls are not completely spedfic, but merely encode utterances guite sparsely.



parameters could also be set by biologicdly plausible synaptic learning rules. * Recognition’ of eah
of the 10 petternsis sgnaled by the firing of a mrresponding pettern-seledive neuron. We have
labeled such neurons ‘y’ neurons (see Anatomy sedion below), and will focus on the behavior of
the particular y neuron that is sledive for the word ‘one’. The neuron fires in response to this
word, whether it is gpoken rapidly or slowly, or when spoken by a variety of spegers. When aloud
sound at 800 Hz is played simultaneously with the word ‘one’, the network’ s abili ty to recognize
the word is only slightly degraded. In contrast, the y neuron does not respond to ‘one’ played
badkward or to most monosyllabic utterances, although on occasion it does respond to words which
are similar to ‘on€’. In short, the system contends with the kind of natural variations and context
with which humans can contend, and has a good ability to rejed simple masking sounds.

Datafrom oney neuron is siown in Figure 1, and ill ustrates the seledivity of the neuron’s response
to simple sound stimuli. Figs. 1a-c ill ustrate the response to the word ‘one,” spoken by two
different speakers and in two very different acustic contexts. The neuron responds robustly in all
three caes. In contrast, asillustrated in Figs. 1d-e, the neuron responds we&kly or not at al to other
utterances, despite their superficial smilarity to the word “one.” 'y neurons do not respond to pure
sinewave tones (data not shown).
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Fig 2 Summary of responses of asingley cdl to ten spoken digits, ‘zero’ through ‘nine.” (Speed data
taken from the T146 database, avail able from NIST.) Each digit was goken ten times by eight different
femal e speakers whil e the responses of the y cdl were recrded. For the purpose of evaluating the cél’s
seledivity, each trial was classfied as ‘responding’ if they cedl fired 4 or more spikes, and as ‘ not
responding’ otherwise. Triangles indicate averages over different utterances by individual speakers,

whil e the gray bars indicate data averaged over al utterances of all speakers. For 5 of the 8 speakers, the
cdl’sresponseis highly seledive for the word ‘one.” Thefill ed symbd indicates the speaker from
which the single training utterance was taken.



Figure 2 ill ustrates the result of stimulating the system with a variety of spoken digits.

For most spe&kers, the neuron was highly seledive for the word ‘one’. Most of the failures to
respond to “one” were on utterances of threespeers on whom the system had not been trained
(lower threetriangle symbols in column marked “one” in Fig. 2). Thisis perhaps not surprising in
view of the fad that the parameters for this pattern had been set based on a single example from
another speaker. More surprising isthe fad that the y neuron generalized from a single utterance of
the training speker to most utterances of 4 other spekers.

Aswe will show, the system’s complex word-reaognition caculation, which in this case involves
integrating information spread out over ~0.5 se¢ is caried out by cdlsthat have remarkably smple
biophysicd and physiologicd properties. The network’s neurons can be well-described as a
straightforward colledion of classcd integrate-and-fire neurons with elementary synaptic
connedions between them.

Neuroanatomy

We describe the achitedure of the network asif it were aranged in a biologicd-like layout. y
neurons are found grouped into the superficial layers of what we dub here ‘areaW’. Auditory
information reades areaW via another areg ‘areaA’, which may be thought of asa cortica
sensory area Neuronsin areaA are frequency-tuned (see”Eledrophysiology” sedion below), and
are aranged in groups having similar preferred frequencies, that is, frequency is tonotopicadly
mapped. Output neurons of areaA projed to what we have cdled layer ‘4’ of areaW. Word-
seledivity arisesin areaW, and we will therefore focus our anatomicd description on areaW.

The aons of areaA output cdls arborize narrowly in layer 4 of areaW, and preserve the tonotopic
mapping found in areaA. Layer 4 of areaW contains two types of cdls, both of which receve
dired excitatory synaptic input from areaA afferents. a type cdls are excitatory, and 3 type cdls
are inhibitory. Both of these types of layer 4 cdls are found in smilar numbers. All cdlsare
eledricdly compad.

The aons of both a and 3 neurons arborize widely within areaW, ead making a total of
approximately 75-200 synaptic connedions with other neurons, acossall tonotopic frequency
groups. Approximately half of the connedions from ead cdl are onto a cdls, the other half are
onto 3 cdls. Axonsof a and 3 cdlsalso arborizein layers 2 and 3, where they contad v cdls.



Layers ‘2+3’

Area A

Fig 3 Schematic neuroanatomy for area W and itsinput. The thick dashed line separates area A from
area W; the thin dotted line separates layers ‘ 2+3' from layer ‘4’ in area W. Small fill ed circlesindicate
excitatory connedions, while small open circlesindicate inhibitory connedions. The mnnedions of a
typical a cdl and atypical (3 cdl, bath shown in the center, are sketched. In the smulations, area W is
small, containing 325neurons of each a and 3 type, and a given cdl makes s/napseson 15-30% of
these cdls. Our smulation contains 10 dfferent y cdls, each sdledive for a different temporal pattern.
Each y cdl recavesinputs from 30-80 cdl s of each type a,f3.

There ae aout 3% asmany y cdlsasthere aea or (3 cdls. Eachy cdl receves approximately 30-
80 synapses from cdls of type a and of type 3; these inputs are drawn from cdlsin all frequency
groups. y cdls are the output cdls of this system: their axons projed to cther corticd areas, where
they make excitatory synapses. They do not feed badk to a or 3 cdls.

Distances within areaW are short, and the diameters of axons of all cdl types are large. Thus,
propagation delays within areaW appea to be unimportant. Latencies from areaA to areaW are
the same for all cdls.

Eledrophysiologyin vivo
Area A

As described above and shown in Fig. 3, the projedion neurons of areaA provide the input to area
W. We ontinue our description in the language of neurobiologicd experiments, but note that the
neural interadions important for word seledivity are found in areaW,; the medanisms that give
rise to the properties of areaA neurons are not of relevance The detailed (non-biologica) source
code for areaA in the smulations can be found on the main web site asociated with this paper.

The properties of areaA neurons can be summarized by saying that (a) areaA neurons are
frequency tuned; and (b) the neurons respond to transient changes in acoustic signals with atrain of
adion potentials of dowly decging firing rate. Cellsin areaA responded transiently to threetypes
of “feaures’: onsets (~ 35% of cdls), offsets (~ 35%), and pe&ks (~ 30%) of power in modulated
sinewave tones. The cdls exhibited no tonic response to continuing steady sounds of any
frequency. Every response produced a owly decging train of adion potentials after initiation.
(SeeFigure 4a.) Different cdls had dfferent response decyy rates. Figure 4b ill ustrates two ‘on’
cdlswith different decay times. Over the population of recorded neurons, awide variety of decay.
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Fig. 4 a) Spikerastersfor atypical ‘on’ cdl and atypical ‘off’ cdl in response to two pure sinewave
tone stimuli, asindicated at the battom of the pandl. The beginning and end of each tone are dightly
smoathed as shown to minimize the generation of spurious frequencies by the sharp transient. b)
Responses of two different ‘onset’ cdlsto six different trials of a pure tone onset. One cdl is s1own in
gray, the other in black (top and battom of panel). The ceater panel shows PSTHSs of the responses of the
two cdls. ¢) The number of spikes generated in response to ‘step’ sinewave inputs (as siown in panel
(a)) asafunction of sinewave frequency, plotted for threediff erent sinwave amplitudes. Signal power is
measured in dedbelsrelative to an arbitrary reference power. Aslong as the frequency is within arange
that depends on signal power (larger range for larger signal powers), the number of spikes generated
varieslittl e. Fill ed symbd s indicate the boundary between presence and absence of a robust spiking
response. d) Parabdi c fits to measurements of threshold power vs frequency, for 7 dfferent onset cdls.
Each parabda represents a single cdl. Fill ed symbds correspond to fill ed symbdsin panel (c). €) The
response of an ‘onset’ cdl to threedifferent stimuli, a pure tone onset, the word ‘on€e’, and the word
‘nin€’. f) Histograms of the responses of panel €) time-shifted into best alignment. When shifted into
alignment, thereis no apparent difference between these histograms, or between the spike rasters of the
threeutterances.

times were found, ranging uniformly from 0.3 secto 1.1 sec Once a c# initiated a response,
subsequent feaures in the sound stimulus that occurred during the decay had no effed on the spike
train. After the end of the decay, newly occurring feaures can reinitiate the response.
(Nevertheless for simplicity, the particular smulations shown on the web site associated with this
paper were restricted to use only the first feaure deteded, without the posshili ty of reinitiation.)

Cédlsin areaA were found to be frequency-tuned. Fig. 4c shows the response of atypicd ‘onset’
cdl asthe power and frequency are varied. The cdl respondsto a small range of frequencies, the
width of which grows with the power of the signal. All cdlswere found to be frequency-tuned in



this ense. Within eadt cdl’ s range of response-producing frequencies, the cdls displayed an
amost ‘all-or-none’ response: provided the signal intensity was above aminimum threshold, eat
cdl fired amost the same number of spikes regardlessof the frequency or intensity of the signal.
Figure 4d ill ustrates the frequency tuning of 7 dfferent cdls over arange of signal powers.
Different signals that were succesgul in driving areaA neurons did not seem to produce
significantly different responses. Figure 4e-f shows that the stereotyped response of atypicd
‘onset’ cdl in areaA was esentialy identicd for threevery different acoustic stimuli that drove it.

For ead ‘flavor’ of areaA cdl (onset, pe&k, or offset), different cdls, with preferred frequencies
spanning the entire frequency spedrum, were found. For ead flavor and for ead preferred
frequency, cdlswith abroad range of decay rates were found.

Area W

We now turn to the dedrophysiology of neurons in areaW, where word-seledivity arises. Asin
areaA, cdlsof both type a and (3 in layer 4 of areaW are aranged in groups with similar preferred
frequencies. The responses of both a and 3 cdls were found to be smilar to the output cedls of area
A which drive them: the threetypes ‘onset’, ‘offset’, and ‘pe&k’ cdlswere d found in layer 4 of
areaW. Asin areaA, for ead ‘flavor’ of a or 3 neuron (onset, pedk, or offset), different cdls, with
preferred frequencies gpanning the entire frequency spedrum, were found. For ead flavor and for
ead preferred frequency, cdls with abroad range of decay rates were found. The responses of one
‘onset’ and one ‘offset’ cdl areillustrated in Fig. 5a. Amplitude steps of pure sinewave tones were
used to drive two ‘onset’ cdlswith different decgy rates, ill ustrated in Fig Sb.
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Fig. 5 Responsesof layer 4 area W cdls. @) The spikerastersfor atypical ‘on’ cdl and atypical *off’
cdl in response to sine wave pulses; format asin Fig4a. b) Responses of two different onset cdlsto six
different trials using the same pure tone onset; format asin Fig 4b. c) The response of an ‘onset’ cdl to
threedifferent stimuli, a pure tone step, the word ‘on€’, and theword ‘nin€’; format asin Fig 4e. d)
Histograms of the responses of panel €) shifted into a common response onset time; format asin Fig 4f.

In sum, when studied with pure tones, the decay rates and frequency tuning properties of a and 3
cdlswere very similar to those described for areaA (seeFigure 4). In contrast, small but reliable
differences were found when the cdls were stimulated with speed signals. Fig. 5c ill ustrates the



responses of an ‘onset’ cdl to threedifferent stimuli, a pure tone step, an utterance of the word
‘nine’ (on which the animal had not been trained), and an utterance of the word ‘one’ (aword on
which the animal had been trained). Figure 5d shows the PSTHs of these responses, aigned to a
common response onset time. While in areaA the responses to pure tones and speed are
indistinguishable from ead other, in areaW the PSTHSs of the responses to speed are subtly but
consistently different to the PSTH of the response to the pure tone. After approximately 400 ms, the
response to speed signals is consistently stronger and more persistent than the response to pure
tone steps. Thus, layer 4 of areaW isthefirst level of the pathway leading to the word-seledive y
cdls of layers 2+3 that shows aresponse mmponent that is gedfic to speed. We do not know the
predse role that this late sustained component may play in word-seledivity. Firing patterns and
response properties of a and 3 cdls ean esentialy identicd.

The charaderistics of the layer 2-3 “one”-seledive y cdl shown in Fig 1 have dready been
described. The simulation contains 9 additional y cdls, ead ‘tuned’ to deted a different pattern
composed of arandomly chosen arrangement of onsets, peeks, and off sets. The seledivity
properties of eat of these y cdls, with resped to their target pattern and variants around it, are
similar to that of the “one”-seledivey cdl, and we do not describe them further here. Wheny cdls
respond, they generally do so with a pattern containing 4-8 spikes with atypicd ‘frequency’ of 30-
60 hz.

Intracdlular recording in a dlicepreparation

Finally, we turn to in vitro studies of the biophysicd properties of the a, 3, y neuron typesin area
W. Thethree cd types are qualitatively similar, and appea to be well-described by smple
integrate-and-fire cdl models.

Synapse properties were studied using conventional two eledrode methods. Excitatory
postsynaptic currents (EPCs, ill ustrated in Fig. 6a) have an extremely fast rise time and decay
exponentialy with atime @nstant of 2 ms. Inhibitory postsynaptic aurrents (IPSCs, illustrated in
Fig. 6b), in contrast, have adower rise time. |PSC waveforms were well-fit by alpha-functions (fits
not shown), with a pegk amplitude time of 6 ms. The recrdings siown in Figs. 6a-b were made
with cdlsheld at .65 mV, but waveform amplitudes and time anstants changed little when the
holding potential was varied within the range —75 mV to -55 mV. Paired-pulse experiments (data
not shown) have demonstrated that both excitatory and inhibitory synapses in areaW neither adapt
nor fadlitate, and that synaptic currents due to closely timed adion potentials add linealy. The
EPSR and IPSP obtained in the same cdls as siown in Figs. 6a-b when the voltage damp was
removed are shown in Figs. 6¢-d.
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Fig. 6 Whole-cdl recordingsfrom a and 3 cdlsin layer 4. Panesa-d: A minimal stimulation
protocol was used to observe synaptic responses due to the activation of a single axon afferent to the
recorded cdl. a) Excitatory postsynaptic aurrent measured in a3 cdl under voltage damp conditions.
b) Inhibitory postsynaptic aurrent measured in an a cdl. ¢) EPSE measured in the same cél asin (a).
Resting state here mrresponds to the cél’ s resting membrane potential, -65mV. (Sincenoiseis
present in all real biological systems, here and in all other simulations, independent white Gausdan
noise with standard deviation 0.2 mV was added to the neuron’s membrane potential at each 0.1 ms
timestep.) The trace shown is the average of 1000repeats. d) IPSE measured in the same cél asin
(b). €) Spiking response to an above-threshold current step, showing no spike-frequency adaptation.

Grey bar indicates the time during which current was injeded. f) Firing rate of an a cdl asafunction
of input current. Points are the experimental measurements, and the solid lineis a calculated fit to
these points, based on a leaky integrate-and-fire model of the cdl.

o and 3 cdlswere found to be dedrotonicaly compad, with membrane time constants of
approximately 20 ms. We goplied a series of constant current steps of different amplitude to these
cdls. One such applicaion isillustrated in Fig. 6e, and the result of the entire series of stepsis
summarized by the data points siown in Fig. 6f. By al studies we have made, both o and 3 cels
have properties which can be duplicaed by le&ky integrate-and-fire neurons with a short absolute
refradory time period. The solid linein Fig. 6f is the result of fitting such a model to the data points
shown in the same panel. The parameters of the fit were: absolute refradory time period 2 ms,
membrane time constant 20 ms, resting potential .65 mV, firing threshold -55 mV, reset potential
after spiking =75 mV, membrane cgadtance 250 @=. Though in vivo firing rates greaer than 150
hz are seldom seen, when driven by steady currents the maximum firing rate of al three cd types
isaround 500spikes/sec

They cdls of layer 2+3 cdls are qualitatively smilar to a,3 cdlsin every way, but quantiatively y
cdls have asmaller membrane resistance, and a shorter membrane time wnstant of 6 ms. IPSC's
and EPSC's eniny cdls have time murses very similar to those seen in a,3 cdls (Fig.6) but the
typicd pe&k currents are dout threetimes as large.
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Conclusion

This g/stem caries out a difficult computation in a manner that results in significant robustnessto
variability and noise. It reagnizes whole sound sequencesin away that is not sengitive to the kinds
of variability that are present in netural vocdizaions—variationsin voice quality, in speed of
spe&king a syllable, and in sound intensity. The computation integrates a short epoch of the past
into a‘present’ dedsion, in this case aout the cdegory to which arecent sound belongs. Despite
the complexity and robustnessof the computation, the dements that compose the system, and the
inputs to it, are remarkably smple. Most importantly, they are similar to the dements found in red
neurobiology: our goal isto understand how neurobiology might integrate and reaognize
spatiotemporal patterns. The biophysics of individual neurons and synapsesis that of classcd
integrate-and-fire neurons with non-adapting synapses. The projedion reurons of areaA respond to
stimuli in afashion not unlike some responses avail able in processng regions of a variety of
sensory modalities. In short, given apparently ordinary input and computing elements, the system
robustly carries out the complex task of reagnizing spoken words.

The dgorithm effedively carried out by this network of simple, biologicdly plausible neuronsis a
novel one, applicable to awide variety of inputs and situations, whose principles will be described
in the subsequent paper. Here we only remark that consideration of the detail s given will convince
areaer that we have not clothed a badkprop-trained network in biologicdly-plausible canouflage,
and that the network is using neurons colledively and not aslogic dements.

Any neurobiologicd computation should be robust to cdlular variations. For example, high
acaracy inindividual synapse propertiesis biologicaly unredistic, and a computational
neurobiologist will not take seriously schemes requiring grea acaracy of individual synapses. The
present system itself is ‘biologicd’ in this regard--smultaneously varying ead synaptic connedion
strength between neuronsin areaW by a different random fador of +/-50% has no appredable
effed on the response of the a, 3, or y cdls.

The aticle with an explicit description of the principles of operation of the system will be presented
in afew months. Our surprise in finding that the novel network principles could be fully deduced,
based on the straightforward experimental results presented here, leads usto ask whether long
chains of logicd deduction similar to the one gpropriate in this case muld be usefully applied in
neurobiology. We do not claim to know the answer to this question, but we believe it is useful to
raiseit.

We assure the reader that no additional features of neurobiology are required beyond those herein
described either explicitly or implicitly. However, some readers may wish to learn more detail s, or
may wish to carry out experiments of their own design. We have constructed an interadive web
Site, ht t p: // neur on. pri ncet on. edu/ ~nonent , where this can be done. The web site mntains
speed files with numerous examples of spoken utterances, sinewave pulses, and the crresponding
recordings that would be available from single-eledrode extracdlular studies of the output cdls of
areaA cdls, and the a, (3, and y cdls of areaW. The sound files can be heard, and the sound files
and spike rasters can be downloaded. A user can also upload new sound files to the website and
study the ‘eledrophysiology’ of responses to those files.
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The second paper will contain references to the relevant artificial and biologicd neural literature.
The dhallenge presented in this paper has involved describing a computational network asiif it were
abiologicd one. In this girit, references to relevant material that led the aeaors of the network to
the principles underlying it are not appropriate, and we have dosen to include none in this paper.

Thereseach at Princeton University was supported in part by NSF grant ECS98-73463and at New
Y ork University by a postdoctoral fellowship to CDB from the Sloan Foundation.
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