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Abstract 
 

Recognition of complex temporal sequences is a general sensory problem that requires integration 
of information over time. We describe a very simple ‘organism’ that uses novel neural 
computational principles to perform this task, exemplified here by recognition of spoken 
monosyllables.  The ‘organism’ is a network of very simple neurons and synapses; the experiments 
are simulations. The network’s recognition capabili ties are robust to variations across speakers, 
simple masking noises, and large variations in system parameters. The network principles 
underlying recognition of short temporal sequences are applied here to speech, but similar ideas can 
be applied to aspects of vision, touch, and olfaction. In this paper, we describe only properties of 
the system that could be measured if it were a real biological organism. We delay publication of the 
principles behind the network’s operation as an intellectual challenge: the novel essential principles 
of operation can be deduced based on the experimental results presented here alone.  An interactive 
web site (http://neuron.princeton.edu/~moment) is available to allow readers to design and carry 
out their own experiments on the ‘organism’. 
 
Introduction 
 
How does a brain integrate sensory information that occurs over a time on the scale of ~0.5 
seconds, transforming the constantly changing world of stimuli into percepts of a ‘moment’ of 
time?  This is a general problem essential to our representation of the world.  In audition, the 
perception of phonemes, syllables, or species calls are examples of such integration; in the 
somatosensory system, the feeling of textures involves such integration; in the visual system, object 
segregation from motion and structure from motion require short-time integration; in the olfactory 
system, sensing odors during a sniff involves temporal integration. Linking together recently-
occurred information into an entity present ‘now’ is a fundamental part of how the percept of a 
present ‘moment’ is constructed; a key issue in this regard is how such integration over time can be 
carried out using neural hardware. 
 
We describe here a simple and very biologically plausible network of spiking neurons that 
recognizes short complex temporal patterns. In so doing, the network links together information 
spread over time. The network was designed using novel computational principles. It is capable of 
broad generalization from a single example and is robust to noise. These capabili ties are 
demonstrated here by considering the real-world problem of recognizing a brief complex sound (a 
monosyllable; see Figure. 1).  We chose this representative but specific task because it is a natural 
capabili ty of our auditory systems. The task is well-defined and conceptually easy to describe, and 
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real-world data is available to exemplify the important problem of natural variabili ty and noise.  
The object here is to understand how high selectivity for spatiotemporal patterns can be obtained in 
a biological system; the performance of this simple system as a word recognizer is of course far 
worse than digital computer based commercial systems, but the comparison is not relevant. 
 
In this paper, we describe the network by presenting only observations and experiments that would 
have been performed on the network if it were a real biological organism. As with a real organism, 
we do not explicitly describe in this paper the principles underlying the network’s operation, but 
merely the experimental facts that one can record about it; the principles of operation must be 
deduced. In a few months, we will present in a second paper a full and explicit description of the 
principle behind the design and performance of the system.  
 
We have chosen this unusual mode of presentation based on our own experience with the system.  
We were surprised to find that the information described in this paper was sufficient to deduce the 
principles on which the system works. Had this been a real biological system, we ourselves would 
have been inclined to believe instead that the secret of the specificity must lie in additional cell 
types, cellular biophysical complexity, or other as-yet unmeasured fundamental properties; we 
would have glossed over subtleties that actually clearly indicate how the system works, and we 
would never have found the interesting principle on which the network computation is based. 
 
How often have we been guilty of similar behavior in looking at data from neurobiology?   
Probably often, from lack of practice in interpreting data instantiating a new principle in an unusual 
fashion.  How often have others been guilty of similar behavior? We cannot know; probably less 
than ourselves. However, feeling that some in the community might appreciate an opportunity to 
interpret the behavior of a system that is guaranteed to have no hidden components, we have 
chosen to present in this paper only conventional ‘experimental information’—conventional 
information that we know is sufficient to derive the underlying computational principle and to 
understand how the system computes.  Someone who simply wants to be told the principle will find 
that information in the second paper, to be published shortly after this one.   
 
We will begin by describing the network’s complex pattern recognition behavior, and the firing 
patterns of those neurons that are correlated with this behavior. We will then turn to the full 
network, and describe its neuroanatomy (cell types, synapse types, connectivity pattern), 
physiological properties in response to acoustic stimuli, and single-cell properties as observed in 
vitro.  We will write as though the network were a real organism, as far as the experimental 
measurements are concerned. 
 
 
Behavior and electrophysiological corr elates 
 
In the particular network described here, a novel principle of computation that enables the network 
to recognize the spoken monosyllable “one,” as well as 9 other different patterns, has been 
instantiated through a particular choice of network parameters. The method to determine the 
parameters that enable recognition of each pattern is non-iterative, and requires information based 
on only a single example of the pattern to be recognized. Although the method is straightforward, it 
is not the focus of our study and we will not describe it further, only noting that we believe the  



 3 

"one"
(speaker  a)

a

"one"
(speaker  b)

b

"one" + tone
(speaker  a)

c

  reversed "one"
(speaker  a)

d

"three"
(speaker  b)

e

2
4
6
8

0

50

sp
ks

/s
ec

−1
0
1

2
4
6
8

0

50

sp
ks

/s
ec

−1
0
1

2
4
6
8

0

50

sp
ks

/s
ec

−1
0
1

2
4
6
8

0

50

sp
ks

/s
ec

−1
0
1

2
4
6
8

400 600 800
0

50

time (ms)

sp
ks

/s
ec

−1
0
1

 
Fig 1   Extracellularly recorded responses of a single γ-type neuron to five different acoustic waveforms. 
A noisy membrane current was added to every neuron in the simulation of the neuronal mathematics for 
the ‘organism’ , to simulate the noise due to other inputs that would always be present in a real biological 
system.  Before the experiment, the network parameters were set using only a single exemplar of the 
word ‘one’ spoken by speaker (a), plus single examples of 9 other different patterns (each recognized by 
one of 9 other γ neurons, not shown here.). a) Spike rasters, aligned in time to the start of the acoustic 
waveform shown in the inset, in response to 8 different trials using an utterance of the word ‘one’ from 
speaker (a) (not the training exemplar). Below the rasters is their corresponding peristimulus time 
histogram (PSTH), smoothed by a Gaussian with a standard deviation of 12 msec. The γ cell begins 
spiking near the end of the word. Tick marks in the inset correspond to 0 and 500 ms. b) Same format as 
panel A, for an utterance of the word ‘one’ from a different speaker (b). c) Same format as panel A for a 
‘one’ spoken by speaker b in the presence of a loud tone at 800 Hz.The waveforms are markedly 
different in a),b) and c) yet the γ cell responds to all .  d) Same format and utterance as in panel a), but the 
acoustic waveform has been reversed in time. e) Same format as panel a), for an utterance by speaker (b) 
of the word ‘ three’ .  Few or no spikes occurred in response to the waveforms of panels d) and e).  Other, 
similar-sounding words (for example, ‘wonder’) occasionally cause the cell to fire as well , indicating that 
these output cell s are not completely specific, but merely encode utterances quite sparsely. 
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parameters could also be set by biologically plausible synaptic learning rules. ‘Recognition’ of each 
of the 10 patterns is signaled by the firing of a corresponding pattern-selective neuron. We have 
labeled such neurons ‘γ’ neurons (see Anatomy section below), and will focus on the behavior of 
the particular γ neuron that is selective for the word ‘one’ . The neuron fires in response to this 
word, whether it is spoken rapidly or slowly, or when spoken by a variety of speakers. When a loud 
sound at 800 Hz is played simultaneously with the word ‘one’ , the network’s abili ty to recognize 
the word is only slightly degraded. In contrast, the γ neuron does not respond to ‘one’ played 
backward or to most monosyllabic utterances, although on occasion it does respond to words which 
are similar to ‘one’ . In short, the system contends with the kind of natural variations and context 
with which humans can contend, and has a good abili ty to reject simple masking sounds. 
 
Data from one γ neuron is shown in Figure 1, and ill ustrates the selectivity of the neuron’s response 
to simple sound stimuli.  Figs. 1a-c ill ustrate the response to the word ‘one,’ spoken by two 
different speakers and in two very different acoustic contexts. The neuron responds robustly in all 
three cases. In contrast, as ill ustrated in Figs. 1d-e, the neuron responds weakly or not at all to other 
utterances, despite their superficial similarity to the word “one.”  γ neurons do not respond to pure 
sinewave tones (data not shown). 
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Fig 2   Summary of responses of a single γ cell to ten spoken digits, ‘zero’ through ‘nine.’ (Speech data 
taken from the TI46 database, available from NIST.) Each digit was spoken ten times by eight different 
female speakers while the responses of the γ cell were recorded. For the purpose of evaluating the cell ’s 
selectivity, each trial was classified as ‘ responding’ if the γ cell fired 4 or more spikes, and as ‘not 
responding’ otherwise. Triangles indicate averages over different utterances by individual speakers, 
while the gray bars indicate data averaged over all utterances of all speakers.  For 5 of the 8 speakers, the 
cell ’s response is highly selective for the word ‘one.’  The fill ed symbol indicates the speaker from 
which the single training utterance was taken. 
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Figure 2 ill ustrates the result of stimulating the system with a variety of spoken digits. 
For most speakers, the neuron was highly selective for the word ‘one’ .  Most of the failures to 
respond to “one” were on utterances of three speakers on whom the system had not been trained 
(lower three triangle symbols in column marked “one” in Fig. 2). This is perhaps not surprising in 
view of the fact that the parameters for this pattern had been set based on a single example from 
another speaker.  More surprising is the fact that the γ neuron generalized from a single utterance of 
the training speaker to most utterances of 4 other speakers.  
 
As we will show, the system’s complex word-recognition calculation, which in this case involves 
integrating information spread out over ~0.5 sec, is carried out by cells that have remarkably simple 
biophysical and physiological properties. The network’s neurons can be well-described as a 
straightforward collection of classical integrate-and-fire neurons with elementary synaptic 
connections between them.  
 
 
Neuroanatomy 
 
We describe the architecture of the network as if it were arranged in a biological-like layout. γ 
neurons are found grouped into the superficial layers of what we dub here ‘area W’. Auditory 
information reaches area W via another area, ‘area A’, which may be thought of as a cortical 
sensory area. Neurons in area A are frequency-tuned (see “Electrophysiology” section below), and 
are arranged in groups having similar preferred frequencies, that is, frequency is tonotopically 
mapped. Output neurons of area A project to what we have called layer ‘4’ of area W. Word-
selectivity arises in area W, and we will therefore focus our anatomical description on area W. 
 
The axons of area A output cells arborize narrowly in layer 4 of area W, and preserve the tonotopic 
mapping found in area A. Layer 4 of area W contains two types of cells, both of which receive 
direct excitatory synaptic input from area A afferents. α type cells are excitatory, and β type cells 
are inhibitory. Both of these types of layer 4 cells are found in similar numbers. All cells are 
electrically compact.  
 
The axons of both α and β neurons arborize widely within area W, each making a total of 
approximately 75-200 synaptic connections with other neurons, across all tonotopic frequency 
groups. Approximately half of the connections from each cell are onto α cells, the other half are 
onto β cells.  Axons of α and β cells also arborize in layers 2 and 3, where they contact γ cells. 
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Fig 3   Schematic neuroanatomy for area W and its input. The thick dashed line separates area A from 
area W; the thin dotted line separates layers ‘2+3’ from layer ‘4’  in area W. Small fill ed circles indicate 
excitatory connections, while small open circles indicate inhibitory connections. The connections of a 
typical α cell and a typical β cell , both shown in the center, are sketched.  In the simulations, area W is 
small , containing 325 neurons of each α and β type, and a given cell makes synapses on  15-30% of 
these cell s. Our simulation contains 10 different γ cell s, each selective for a different temporal pattern. 
Each γ cell receives inputs from 30-80 cell s of each type α,β.  

 
 
There are about 3% as many γ cells as there are α or β cells. Each γ cell receives approximately 30-
80 synapses from cells of type α and of type β; these inputs are drawn from cells in all frequency 
groups. γ cells are the output cells of this system: their axons project to other cortical areas, where 
they make excitatory synapses. They do not feed back to α or β cells. 
 
Distances within area W are short, and the diameters of axons of all cell types are large. Thus, 
propagation delays within area W appear to be unimportant. Latencies from area A to area W are 
the same for all cells. 
 
Electrophysiology in vivo 
 
Area A 
 
As described above and shown in Fig. 3, the projection neurons of area A provide the input to area 
W. We continue our description in the language of neurobiological experiments, but note that the 
neural interactions important for word selectivity are found in area W; the mechanisms that give 
rise to the properties of area A neurons are not of relevance.  The detailed (non-biological) source 
code for area A in the simulations can be found on the main web site associated with this paper. 
 
The properties of area A neurons can be summarized by saying that (a) area A neurons are 
frequency tuned; and (b) the neurons respond to transient changes in acoustic signals with a train of 
action potentials of slowly decaying firing rate. Cells in area A responded transiently to three types 
of “features” : onsets (~ 35% of cells), offsets (~ 35%), and peaks (~ 30%) of power in modulated 
sinewave tones. The cells exhibited no tonic response to continuing steady sounds of any 
frequency. Every response produced a slowly decaying train of action potentials after initiation. 
(See Figure 4a.) Different cells had different response decay rates: Figure 4b ill ustrates two ‘on’ 
cells with different decay times. Over the population of recorded neurons, a wide variety of decay. 
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Fig. 4   a) Spike rasters for a typical ‘on’ cell and a typical ‘off ’ cell i n response to two pure sinewave 
tone stimuli , as indicated at the bottom of the panel. The beginning and end of each tone are slightly 
smoothed as shown to minimize the generation of spurious frequencies by the sharp transient.  b) 
Responses of two different ‘onset’ cell s to six different trials of a pure tone onset. One cell i s shown in 
gray, the other in black (top and bottom of panel). The center panel shows PSTHs of the responses of the 
two cell s. c) The number of spikes generated in response to ‘step’ sinewave inputs (as shown in panel 
(a)) as a function of sinewave frequency, plotted for three different sinwave amplitudes. Signal power is 
measured in decibels relative to an arbitrary reference power. As long as the frequency is within a range 
that depends on signal power (larger range for larger signal powers), the number of spikes generated 
varies littl e. Fill ed symbols indicate the boundary between presence and absence of a robust spiking 
response. d) Parabolic fits to measurements of threshold power vs frequency, for 7 different onset cell s. 
Each parabola represents a single cell . Fill ed symbols correspond to fill ed symbols in panel (c). e) The 
response of an ‘onset’ cell to three different stimuli , a pure tone onset, the word ‘one’ , and the word 
‘nine’ .  f) Histograms of the responses of panel e) time-shifted into best alignment. When shifted into 
alignment, there is no apparent difference between these histograms, or between the spike rasters of the 
three utterances.   
 

times were found, ranging uniformly from 0.3 sec to 1.1 sec.  Once a cell initiated a response, 
subsequent features in the sound stimulus that occurred during the decay had no effect on the spike 
train.  After the end of the decay, newly occurring features can reinitiate the response. 
(Nevertheless, for simplicity, the particular simulations shown on the web site associated with this 
paper were restricted to use only the first feature detected, without the possibili ty of reinitiation.) 
 
Cells in area A were found to be frequency-tuned. Fig. 4c shows the response of a typical ‘onset’ 
cell as the power and frequency are varied. The cell responds to a small range of frequencies, the 
width of which grows with the power of the signal. All cells were found to be frequency-tuned in 
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this sense. Within each cell’s range of response-producing frequencies, the cells displayed an 
almost ‘all-or-none’ response: provided the signal intensity was above a minimum threshold, each 
cell fired almost the same number of spikes regardless of the frequency or intensity of the signal. 
Figure 4d ill ustrates the frequency tuning of 7 different cells over a range of signal powers.   
Different signals that were successful in driving area A neurons did not seem to produce 
significantly different responses. Figure 4e-f shows that the stereotyped response of a typical 
‘onset’ cell in area A was essentially identical for three very different acoustic stimuli that drove it. 
 
For each ‘ flavor’ of area A cell (onset, peak, or offset), different cells, with preferred frequencies 
spanning the entire frequency spectrum, were found. For each flavor and for each preferred 
frequency, cells with a broad range of decay rates were found. 
 
Area W 
 
We now turn to the electrophysiology of neurons in area W, where word-selectivity arises. As in 
area A, cells of both type α and β in layer 4 of area W are arranged in groups with similar preferred 
frequencies. The responses of both α and β cells were found to be similar to the output cells of area 
A which drive them: the three types ‘onset’ , ‘offset’ , and ‘peak’ cells were all found in layer 4 of 
area W. As in area A, for each ‘ flavor’ of α or β neuron (onset, peak, or offset), different cells, with 
preferred frequencies spanning the entire frequency spectrum, were found. For each flavor and for 
each preferred frequency, cells with a broad range of decay rates were found. The responses of one 
‘onset’ and one ‘offset’ cell are ill ustrated in Fig. 5a. Amplitude steps of pure sinewave tones were 
used to drive two ‘onset’ cells with different decay rates, ill ustrated in Fig 5b. 
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Fig. 5   Responses of layer 4 area W cells.  a) The spike rasters for a typical ‘on’ cell and a typical ‘off ’ 
cell i n response to sine wave pulses; format as in Fig4a.  b) Responses of two different onset cell s to six 
different trials using the same pure tone onset; format as in Fig 4b.  c) The response of an ‘onset’ cell to 
three different stimuli , a pure tone step, the word ‘one’ , and the word ‘nine’ ; format as in Fig 4e.  d) 
Histograms of the responses of panel e) shifted into a common response onset time; format as in Fig 4f. 

  
In sum, when studied with pure tones, the decay rates and frequency tuning properties of α and β 
cells were very similar to those described for area A (see Figure 4). In contrast, small but reliable 
differences were found when the cells were stimulated with speech signals. Fig. 5c ill ustrates the 
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responses of an ‘onset’ cell to three different stimuli, a pure tone step, an utterance of the word 
‘nine’ (on which the animal had not been trained), and an utterance of the word ‘one’ (a word on 
which the animal had been trained). Figure 5d shows the PSTHs of these responses, aligned to a 
common response onset time. While in area A the responses to pure tones and speech are 
indistinguishable from each other, in area W the PSTHs of the responses to speech are subtly but 
consistently different to the PSTH of the response to the pure tone. After approximately 400 ms, the 
response to speech signals is consistently stronger and more persistent than the response to pure 
tone steps. Thus, layer 4 of area W is the first level of the pathway leading to the word-selective γ 
cells of layers 2+3 that shows a response component that is specific to speech. We do not know the 
precise role that this late sustained component may play in word-selectivity.  Firing patterns and 
response properties of α and β cells seem essentially identical. 
 
The characteristics of the layer 2-3 “one”-selective γ cell shown in Fig 1 have already been 
described.  The simulation contains 9 additional γ cells, each ‘ tuned’ to detect a different pattern 
composed of a randomly chosen arrangement of onsets, peaks, and offsets. The selectivity 
properties of each of these γ cells, with respect to their target pattern and variants around it, are 
similar to that of the “one”-selective γ cell, and we do not describe them further here. When γ cells 
respond, they generally do so with a pattern containing 4-8 spikes with a typical ‘ frequency’ of 30-
60 hz. 
 
Intracellular r ecording in a slice preparation 
 
Finally, we turn to in vitro studies of the biophysical properties of the α, β, γ neuron types in area 
W.  The three cell types are qualitatively similar, and appear to be well-described by simple 
integrate-and-fire cell models.  
 
Synapse properties were studied using conventional two electrode methods.  Excitatory 
postsynaptic currents (EPSCs, ill ustrated in Fig. 6a) have an extremely fast rise time and decay 
exponentially with a time constant of 2 ms.  Inhibitory postsynaptic currents (IPSCs,  ill ustrated in 
Fig. 6b), in contrast, have a slower rise time. IPSC waveforms were well-fit by alpha-functions (fits 
not shown), with a peak amplitude time of 6 ms. The recordings shown in Figs. 6a-b were made 
with cells held at –65 mV, but waveform amplitudes and time constants changed little when the 
holding potential was varied within the range –75 mV to –55 mV. Paired-pulse experiments (data 
not shown) have demonstrated that both excitatory and inhibitory synapses in area W neither adapt 
nor facili tate, and that synaptic currents due to closely timed action potentials add linearly. The 
EPSPs and IPSPs obtained in the same cells as shown in Figs. 6a-b when the voltage clamp was 
removed are shown in Figs. 6c-d. 
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Fig. 6   Whole-cell recordings from α and β cell s in layer 4. Panels a-d: A minimal stimulation 
protocol was used to observe synaptic responses due to the activation of a single axon afferent to the 
recorded cell . a) Excitatory postsynaptic current measured in a β cell under voltage clamp conditions.   
b) Inhibitory postsynaptic current measured in an α cell . c) EPSP, measured in the same cell as in (a). 
Resting state here corresponds to the cell ’s resting membrane potential, -65 mV. (Since noise is 
present in all real biological systems, here and in all other simulations, independent white Gaussian 
noise with standard deviation 0.2 mV was added to the neuron’s membrane potential at each 0.1 ms 
timestep.) The trace shown is the average of 1000 repeats. d) IPSP, measured in the same cell as in 
(b). e) Spiking response to an above-threshold current step, showing no spike-frequency adaptation. 
Grey bar indicates the time during which current was injected. f) Firing rate of an α cell as a function 
of input current. Points are the experimental measurements, and the solid line is a calculated fit to 
these points, based on a leaky integrate-and-fire model of the cell . 
 

α and β cells were found to be electrotonically compact, with membrane time constants of 
approximately 20 ms. We applied a series of constant current steps of different amplitude to these 
cells. One such application is ill ustrated in Fig. 6e, and the result of the entire series of steps is 
summarized by the data points shown in Fig. 6f. By all studies we have made, both α and β cells 
have properties which can be duplicated by leaky integrate-and-fire neurons with a short absolute 
refractory time period. The solid line in Fig. 6f is the result of fitting such a model to the data points 
shown in the same panel. The parameters of the fit were: absolute refractory time period 2 ms, 
membrane time constant 20 ms, resting potential –65 mV, firing threshold –55 mV, reset potential 
after spiking –75 mV, membrane capacitance 250 pF.  Though in vivo firing rates greater than 150 
hz are seldom seen, when driven by steady currents the maximum firing rate of all three cell types 
is around 500 spikes/sec. 
 
The γ cells of layer 2+3 cells are qualitatively similar to α,β cells in every way, but quantiatively γ 
cells have a smaller membrane resistance, and a shorter membrane time constant of 6 ms.  IPSC’s 
and EPSC’s seen in γ cells have time courses very similar to those seen in α,β cells (Fig.6) but the 
typical peak currents are about three times as large.  
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Conclusion 
 
This system carries out a difficult computation in a manner that results in significant robustness to 
variabili ty and noise. It recognizes whole sound sequences in a way that is not sensitive to the kinds 
of variabili ty that are present in natural vocalizations—variations in voice quality, in speed of 
speaking a syllable, and in sound intensity. The computation integrates a short epoch of the past 
into a ‘present’ decision, in this case about the category to which a recent sound belongs. Despite 
the complexity and robustness of the computation, the elements that compose the system, and the 
inputs to it, are remarkably simple. Most importantly, they are similar to the elements found in real 
neurobiology: our goal is to understand how neurobiology might integrate and recognize 
spatiotemporal patterns. The biophysics of individual neurons and synapses is that of classical 
integrate-and-fire neurons with non-adapting synapses. The projection neurons of area A respond to 
stimuli in a fashion not unlike some responses available in processing regions of a variety of 
sensory modalities. In short, given apparently ordinary input and computing elements, the system 
robustly carries out the complex task of recognizing spoken words. 
 
The algorithm effectively carried out by this network of simple, biologically plausible neurons is a 
novel one, applicable to a wide variety of inputs and situations, whose principles will be described 
in the subsequent paper.   Here we only remark that consideration of the details given will convince 
a reader that we have not clothed a backprop-trained network in biologically-plausible camouflage, 
and that the network is using neurons collectively and not as logic elements.   
  
Any neurobiological computation should be robust to cellular variations.  For example, high 
accuracy in individual synapse properties is biologically unrealistic, and a computational 
neurobiologist will not take seriously schemes requiring great accuracy of individual synapses.  The 
present system itself is ‘biological’ in this regard--simultaneously varying each synaptic connection 
strength between neurons in area W by a different random factor of +/-50% has no appreciable 
effect on the response of the α, β, or γ cells. 
 
The article with an explicit description of the principles of operation of the system will be presented 
in a few months. Our surprise in finding that the novel network principles could be fully deduced, 
based on the straightforward experimental results presented here, leads us to ask whether long 
chains of logical deduction similar to the one appropriate in this case could be usefully applied in 
neurobiology. We do not claim to know the answer to this question, but we believe it is useful to 
raise it. 
 
We assure the reader that no additional features of neurobiology are required beyond those herein 
described either explicitly or implicitly.  However, some readers may wish to learn more details, or 
may wish to carry out experiments of their own design. We have constructed an interactive web 
site, http://neuron.princeton.edu/~moment, where this can be done. The web site contains 
speech files with numerous examples of spoken utterances, sinewave pulses, and the corresponding 
recordings that would be available from single-electrode extracellular studies of the output cells of 
area A cells, and the α, β, and γ cells of area W.  The sound files can be heard, and the sound files 
and spike rasters can be downloaded.  A user can also upload new sound files to the website and 
study the ‘electrophysiology’ of responses to those files. 
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The second paper will contain references to the relevant artificial and biological neural li terature.  
The challenge presented in this paper has involved describing a computational network as if it were 
a biological one. In this spirit, references to relevant material that led the creators of the network to 
the principles underlying it are not appropriate, and we have chosen to include none in this paper. 
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