BEM 103

Introduction to Finance

Fall 2001/2

Homework 1

Suggested Solutions
5.1 From the formula

$$
P_{t}=\frac{1}{\left(1+r_{t}\right)^{t}}
$$

solve for the t-period spot interest rate. This gives: $r_{1}=0.05, r_{2}=0.05, r_{3}=0.06$. So,

$$
P V=100(.95+.90+.85)=149
$$

5.2 Monthly interest payments in the case of quarterly compounding are (per dollar principal):

$$
\left[(1+0.10 / 4)^{4}-1\right] / 12=0.00865
$$

which is less than in the case of annual compounding:

$$
[(1+0.105)-1] / 12=0.00875
$$

So, the quarterly compounding is more advantageous.
5.5 Solve the following system for the vector of pure discount bond prices:

$$
\left[\begin{array}{c}
1043.29 \\
1220.78 \\
995.09
\end{array}\right]=\left[\begin{array}{ccc}
100 & 1100 & 0 \\
200 & 1200 & 0 \\
80 & 80 & 1080
\end{array}\right]\left[\begin{array}{c}
P_{1} \\
P_{2} \\
P_{3}
\end{array}\right]
$$

The solution is:

$$
\left[\begin{array}{l}
P_{1} \\
P_{2} \\
P_{3}
\end{array}\right]=\left[\begin{array}{c}
.9091 \\
.8658 \\
.7899
\end{array}\right]
$$

Find spot interest rates as in the first problem: $r_{1}=0.100, r_{2}=0.075, r_{3}=0.082$.
5.6 In two years, after it goes "ex dividend," the stock is worth (see formula on top of p. 30):

$$
P V(2)=\frac{10(1.02)(1.10)^{2}}{.10-.02}=154.28
$$

So, today's stock price is

$$
P V(0)=\frac{10(1.10)}{(1+0.10)}+\frac{10(1.10)^{2}+154.28}{(1+0.10)^{2}}=\frac{120.50}{147.50}
$$

5.8

$$
P V=\frac{X_{1}}{1+r} \sum_{t=1}^{\infty}\left(\frac{1+g}{1+r}\right)^{t-1}=\frac{X_{1}}{1+r} \frac{1}{1-\frac{1+g}{1+r}}=\frac{X_{1}}{r-g}
$$

5.9 This annuity can be obtained as a portfolio of a long perpetuity starting now and a short perpetuity starting at $T+1$. Hence,

$$
P V=+\frac{X}{r}-\frac{1}{(1+r)^{T+1}} \frac{X}{r}
$$

5.12 (a) The amount needed now equals: $55000 . /(1+0.05)^{4}=45249$.
(b) The payment A needed each year solves:

$$
A\left[1.05+1.05^{2}+1.05^{3}+1.05^{4}\right]=55000
$$

i.e., $A=12153$.
6.3 Strategy 1 (repeated 4 times):

$$
P V=-47\left(1+\frac{1}{1.1^{2}}+\frac{1}{1.1^{4}}+\frac{1}{1.1^{6}}\right)=-144.47
$$

Strategy 2 (repeated twice):

$$
P V=-90\left(1+\frac{1}{1.1^{4}}\right)=-151.47
$$

Strategy 3:

$$
P V=-300
$$

Strategy 1 has the highest PV, so choose it.
6.5 Cash flows C_{t} :

$$
\begin{gathered}
C_{0}=-240-60, \\
C_{1}=C_{2}=(200-100)(1-0.4)+\frac{240}{3}(0.4), \\
C_{3}=C_{2}+40(1-0.4)+60
\end{gathered}
$$

Hence,

$$
\begin{aligned}
N P V & =C_{0}+C_{1} \frac{1}{1.08}+C_{2} \frac{1}{1.08^{2}}+C_{3} \frac{1}{1.08^{3}} \\
& =4 .
\end{aligned}
$$

($N P V$ is positive, so project is OK.)
6.6 Accounting break-even x solves the following equation:

$$
-\frac{2000}{5}-1500+x(1.5-0.5) \stackrel{!}{=} 0
$$

Hence, $x=1900$. In contrast, NPV break-even y solves the following. Cash flows C_{t} are (note use of accounting profits to compute taxes):

$$
\begin{gathered}
C_{0}=-2000 \\
C_{t}=y(1.5-0.5)-1500-0.34\left[\left(y(1.5-0.5)-1500-\frac{2000}{5}\right]=y(0.66)-854\right.
\end{gathered}
$$

$t=1,2, \ldots, 5 . y$ is the solution to:

$$
-2000+\left(1 / 1.16+1 / 1.16^{2}+1.16^{3}+1 / 1.16^{4}+1 / 1.16^{5}\right)(y(0.66)-854) \stackrel{!}{=} 0
$$

Hence, $y=2219$.
6.7 (a) Headache Pain Reliever: $C_{0}=-10.2$ (all numbers in million dollars); cash inflow at $\mathrm{t}=1,2,3:(4-1.50) 5=$ 12.5 ; taxes: $12.5 @ 34 \%=4.25$; tax "rebate" because of depreciation (straight-line): $10.2 / 3 @ 34 \%=1.156$ (the tax "rebate" is a NOMINAL cash flow, so will have to be discounted at nominal rate!). Summary, split in real and nominal parts::

- Real cash flows: $C_{r 0}=-10.2, C_{r 1}=C_{r 2}=C_{r 3}=8.25$.
- Nominal cash flows: $C_{n 0}=0, C_{n 1}=C_{n 2}=C_{n 3}=1.156$

Real interest rate $=13 \%$; nominal interest rate ; $(13+5) \%=18 \%$
Altogether, discounting real cash flows at real rates and nominal ones at nominal rates (see below for a completely nominal treatment of the case):

$$
\begin{aligned}
N P V & =-10.2+8.25\left(\frac{1}{1.13}+\frac{1}{1.13^{2}}+\frac{1}{1.13^{3}}\right)+1.156\left(\frac{1}{1.18}+\frac{1}{1.18^{2}}+\frac{1}{1.18^{3}}\right) \\
& =-10.2+8.25(2.3612)+1.156(2.1743) \\
& =11.793
\end{aligned}
$$

(b) Broad pain reliever: $C_{0}=-12$; cash inflow at $\mathrm{t}=1,2,3$: $(4-1.70) 10=23$; taxes: $23 @ 34 \%=7.82$; tax "rebate" on depreciation (again, NOMINAL): $12 / 3 @ 34 \%=1.36$; salvage value: 1, taxed @ 34%
Summary, split in real and nominal parts:

- Real cash flows: $C_{r 0}=-12, C_{r 1}=C_{r 2}=15.18 ; C_{r 3}=15.18+1(1-0.34)=15.84$
- Nominal cash flows: $C_{n 0}=0, C_{n 1}=C_{n 2}=C_{n 3}=1.36$

Altogether,

$$
\begin{aligned}
N P V & =-12+15.18\left(\frac{1}{1.13}+\frac{1}{1.13^{2}}\right)+15.84 \frac{1}{1.13^{3}}+1.36\left(\frac{1}{1.18}+\frac{1}{1.18^{2}}+\frac{1}{1.18^{3}}\right) \\
& =-12+15.18(1.6681)+15.84(0.6931)+1.36(2.1743) \\
& =27.258
\end{aligned}
$$

Conclusion: go for (b)

Note: If you use nominal cash flows throughout, numbers change little. For the first project, the NPV becomes:

$$
\begin{aligned}
N P V & =-10.2+8.25\left(\frac{1.05}{1.18}+\frac{1.05^{2}}{1.18^{2}}+\frac{1.05^{3}}{1.18^{3}}\right)+1.156(2.1743) \\
& =12.000
\end{aligned}
$$

The difference is due to: $\frac{1.05}{1.18}=\frac{1}{1.1238} \neq \frac{1}{1.13}$.

