
EE/Ma 127c Error-Correcting Codes
draft of April 30, 2001

R. J. McEliece
162 Moore

Details of Class Project #1
Due date: Week of May 7

You (and/or your team; maximum of four students per team) are expected to produce a
computer program to implement the BCJR “APP” decoding algorithm (ideally, in “log”
form) for the “Berrou” code, i.e., the rate 1/2, memory 4, systematic recursive binary
convolutional code with generator matrix

(1, G1(D)/G2(D)) = (1,
1 +D4

1 +D +D2 +D3 +D4
),

with encoding circuit as shown in Figure 2b of Berrou’s paper. You are expected to imple-
ment the code in truncated form, with each codeword representing k = 1024 information
bits, plus the 4 dummy bts required to force the encoder to the all-zero state. (This makes
the overall code a (2056, 1024) binary linear code.)

• The primary goal is for you run simulations to produce a histograph of the decoder’s log-
likelihod ratios LLR1, . . . ,LLRk for the information bits u1, . . . , uk, for 6 values of Eb/N0:
1 dB, 2 dB, . . . , 6 dB. (Since the distribution of the LLR for a −1 information bit will be
the negative of that for a +1 information bit, your histograms should correct for this bias.
In other words, I want a histogram of ui · LLRi, for i = 1, . . . , k.)

• The secondary goal of the project is to produce a graph which shows the (approximate)
relationship between Eb/N0 and the decoded bit error probability for the given code, for
Eb/N0 ranging from 1 dB to 6dB, in increments of 1 dB. (To decode the ith information
bit ui, you compute LLRi using the BCJR algorithm and then make the decision

ûi =
{

+1 if LLRi ≥ 0
−1 if LLRi < 0.)

• Important Fact: For a binary code of rate R on the AWGN channel, the relationship
between Eb/N0, the bit signal-to-noise ratio and σ2, the Gaussian noise variance, is given
by

σ2 =
(

2R
Eb
N0

)−1

,

so for example for a R = 1/2 code like the Berrou code, the relationship is simply

σ2 =
(
Eb
N0

)−1

.

Remember that Eb/N0 is always quoted in “dBs,” where a dimensionless quantity x equals
10 log10 x dB’s. Thus for example, a value of Eb/N0 of 3.0 dB for the Berrou code corre-
sponds to a value of σ2 = 0.5012.

1

Additional details on Class Project 1.

1. Use the recursion
pn+6 = pn+1 ⊕ pn for n ≥ 0

with the initial conditions

p0 = 1, p1 = p2 = p3 = p4 = p5 = 0,

to generate the k information bits. Ensure that the generated sequence is 100000100001 . . .
and is periodic with period 63.

2. Encode the information sequence using the generator matrix (1, G1(D)
G2(D)) given above. Refer

to the encoder circuit in Figure 1(b) in the Berrou paper, if necessary.

3. The encoder outputs 0’s and 1’s. However, the input to the AWGN is ±1. Therefore, map
0’s to +1’s and 1’s to -1’s. Denote the ±1 input (information) stream by u1, u2, . . . , uk,
and the corresponding ±1 output stream by (u1, x1), (u2, x2), . . . (uk, xk).

4. To simulate the AWGN, add the mean zero, variance σ2 normal (Gaussian) random vari-
ables generated by the following segment of pseudo-code, to the (ui, xi)’s generated at the
previous step. This program outputs two random variables, n1 and n2. Add n1 to ui and
n2 to xi. In your simulations, use a different value of SEED for each run. urand() is a
function which generates a random variable uniformly distributed in the interval [0, 1].

main()

{
. . .

global iurv;

. . .

iurv = SEED;

. . .

. . .

}
normal(n1, n2, σ) /* See “Donald E.Knuth, The Art of Computer Programming, Vol.2,
p.104 ” */

{
do {

x1 = urand();

x2 = urand();

2

x1 = 2x1 − 1;

x2 = 2x2 − 1;

/* x1 and x2 are now uniformly distributed in [-1,+1] */

s = x2
1 + x2

2;

} while (s ≥ 1.0)

n1 = σx1

√
−2 ln s/s;

n2 = σx2

√
−2 ln s/s;

}
urand()

{
iurv = (14157iurv + 6925)(mod32768);

return iurv/32767;

}
5. Implement the BCJR algorithm in “log” form, as discussed in class, using the approxima-

tion to log(x+ y) specified in the solutions to HW assignment 2. Thus

log(x+ y) = max(log x, log y) + f(| log x− log y|),

where f(z) is an approximation to the function log(1 + e−z). Use the branch metric
γ = (x · y)/σ2, where x = (x1, x2) is the two-bit branch label and y = (y1, y2) is the
corresponding pair of received symbols.

3

