You (and/or your team; maximum of four students per team) are expected to produce a computer program to implement the BCJR "APP" decoding algorithm (ideally, in "log" form) for the "Berrou" code, i.e., the rate $1 / 2$, memory 4, systematic recursive binary convolutional code with generator matrix

$$
\left(1, G_{1}(D) / G_{2}(D)\right)=\left(1, \frac{1+D^{4}}{1+D+D^{2}+D^{3}+D^{4}}\right)
$$

with encoding circuit as shown in Figure 2b of Berrou's paper. You are expected to implement the code in truncated form, with each codeword representing $k=1024$ information bits, plus the 4 dummy bts required to force the encoder to the all-zero state. (This makes the overall code a $(2056,1024)$ binary linear code.)

- The primary goal is for you run simulations to produce a histograph of the decoder's loglikelihod ratios $\mathrm{LLR}_{1}, \ldots, \mathrm{LLR}_{k}$ for the information bits u_{1}, \ldots, u_{k}, for 6 values of E_{b} / N_{0} : $1 \mathrm{~dB}, 2 \mathrm{~dB}, \ldots, 6 \mathrm{~dB}$. (Since the distribution of the LLR for a -1 information bit will be the negative of that for a +1 information bit, your histograms should correct for this bias. In other words, I want a histogram of $u_{i} \cdot \operatorname{LLR}_{i}$, for $i=1, \ldots, k$.)
- The secondary goal of the project is to produce a graph which shows the (approximate) relationship between E_{b} / N_{0} and the decoded bit error probability for the given code, for E_{b} / N_{0} ranging from 1 dB to 6 dB , in increments of 1 dB . (To decode the i th information bit u_{i}, you compute LLR_{i} using the BCJR algorithm and then make the decision

$$
\widehat{u_{i}}= \begin{cases}+1 & \text { if } \operatorname{LLR}_{i} \geq 0 \\ -1 & \text { if } \operatorname{LLR}_{i}<0 .\end{cases}
$$

- Important Fact: For a binary code of rate R on the AWGN channel, the relationship between E_{b} / N_{0}, the bit signal-to-noise ratio and σ^{2}, the Gaussian noise variance, is given by

$$
\sigma^{2}=\left(2 R \frac{E_{b}}{N_{0}}\right)^{-1}
$$

so for example for a $R=1 / 2$ code like the Berrou code, the relationship is simply

$$
\sigma^{2}=\left(\frac{E_{b}}{N_{0}}\right)^{-1}
$$

Remember that E_{b} / N_{0} is always quoted in "dBs," where a dimensionless quantity x equals $10 \log _{10} x \mathrm{~dB}$'s. Thus for example, a value of E_{b} / N_{0} of 3.0 dB for the Berrou code corresponds to a value of $\sigma^{2}=0.5012$.

Additional details on Class Project 1.

1. Use the recursion

$$
p_{n+6}=p_{n+1} \oplus p_{n} \quad \text { for } n \geq 0
$$

with the initial conditions

$$
p_{0}=1, p_{1}=p_{2}=p_{3}=p_{4}=p_{5}=0,
$$

to generate the k information bits. Ensure that the generated sequence is $100000100001 \ldots$ and is periodic with period 63 .
2. Encode the information sequence using the generator matrix $\left(1, \frac{G_{1}(D)}{G_{2}(D)}\right)$ given above. Refer to the encoder circuit in Figure 1(b) in the Berrou paper, if necessary.
3. The encoder outputs 0's and 1's. However, the input to the AWGN is ± 1. Therefore, map 0 's to +1 's and 1's to -1 's. Denote the ± 1 input (information) stream by $u_{1}, u_{2}, \ldots, u_{k}$, and the corresponding ± 1 output stream by $\left(u_{1}, x_{1}\right),\left(u_{2}, x_{2}\right), \ldots\left(u_{k}, x_{k}\right)$.
4. To simulate the AWGN, add the mean zero, variance σ^{2} normal (Gaussian) random variables generated by the following segment of pseudo-code, to the $\left(u_{i}, x_{i}\right)$'s generated at the previous step. This program outputs two random variables, n_{1} and n_{2}. Add n_{1} to u_{i} and n_{2} to x_{i}. In your simulations, use a different value of SEED for each run. urand() is a function which generates a random variable uniformly distributed in the interval $[0,1]$.

```
main()
{
    global iurv;
    iurv = SEED;
}
normal ( }n1,\mp@subsup{n}{2}{},\sigma)/* See "Donald E.Knuth, The Art of Computer Programming, Vol.2
p.104 "*/
{
    do {
        x 隹and();
        x}=\operatorname{urand}()
```

```
        x}=2\mp@subsup{x}{1}{}-1
        x}=2\mp@subsup{x}{2}{}-1
            /* }\mp@subsup{x}{1}{}\mathrm{ and }\mp@subsup{x}{2}{}\mathrm{ are now uniformly distributed in [-1,+1] */
        s=\mp@subsup{x}{1}{2}+\mp@subsup{x}{2}{2};
    } while ( }s\geq1.0
    n}=\sigma\mp@subsup{x}{1}{}\sqrt{}{-2\operatorname{ln}s/s}
    n}=\sigma\mp@subsup{x}{2}{}\sqrt{}{-2\operatorname{ln}s/s}
}
urand()
{
    iurv = (14157iurv + 6925) (mod32768);
    return iurv/32767;
}
```

5. Implement the BCJR algorithm in "log" form, as discussed in class, using the approximation to $\log (x+y)$ specified in the solutions to HW assignment 2. Thus

$$
\log (x+y)=\max (\log x, \log y)+f(|\log x-\log y|)
$$

where $f(z)$ is an approximation to the function $\log \left(1+e^{-z}\right)$. Use the branch metric $\gamma=(\mathbf{x} \cdot \mathbf{y}) / \sigma^{2}$, where $\mathbf{x}=\left(x_{1}, x_{2}\right)$ is the two-bit branch label and $\mathbf{y}=\left(y_{1}, y_{2}\right)$ is the corresponding pair of received symbols.

