Homework Assignment 6, Solutions

Problem 1.

For LDPC codes we have: $R=1-\frac{1}{a \sum_{i=2}^{N} \frac{\lambda_{i}}{i}}$. Here $R=\frac{4}{5}$. So we get:
$a=\frac{5}{\sum_{i=2}^{N} \frac{\lambda_{i}}{i}} \geq \frac{5}{\sum_{i=2}^{N} \frac{\lambda_{i}}{2}}=\frac{10}{\sum_{i=2}^{N} \lambda_{i}}=10$. So the smallest possible value for a is 10 , which is achieved when $N=2$ and $\lambda_{2}=1$.

Problem 2.

(a) Let $p_{1}, p_{2}, \cdots, p_{n}$ be such a probability density: $\sum_{i=1}^{n} p_{i} H_{i}=U$.

Let $q_{1}, q_{2}, \cdots, q_{n}$ be such a probability density: $\quad q_{i}=\frac{e^{-\beta H_{i}}}{Z(\beta)}$ for $\quad i=1,2, \cdots, n$; $\sum_{i=1}^{n} q_{i} H_{i}=U$. Here $Z(\beta)=\sum_{i=1}^{n} e^{-\beta H_{i}}$.
$\log x$ is a concave function. So by Jensen's inequality, we have:

$$
\begin{align*}
& \sum_{i=1}^{n} p_{i} \log \frac{q_{i}}{p_{i}} \leq \log \left(\sum_{i=1}^{n} p_{i} \cdot \frac{q_{i}}{p_{i}}\right)=\log \left(\sum_{i=1}^{n} q_{i}\right)=\log 1=0 . \\
& \therefore \sum_{i=1}^{n} p_{i} \log q_{i}-\sum_{i=1}^{n} p_{i} \log p_{i} \leq 0 \\
& \Rightarrow-\sum_{i=1}^{n} p_{i} \log p_{i} \leq-\sum_{i=1}^{n} p_{i} \log q_{i}=-\sum_{i=1}^{n} p_{i} \log \frac{e^{-\beta H_{i}}}{Z(\beta)}=-\sum_{i=1}^{n} p_{i} \log e^{-\beta H_{i}}+\sum_{i=1}^{n} p_{i} \log Z(\beta) \\
& =\sum_{i=1}^{n} p_{i} \cdot \beta H_{i}+\log Z(\beta) \sum_{i=1}^{n} p_{i}=\beta U+\log Z(\beta) \quad \cdots \cdots \cdots \cdots(1) \tag{1}
\end{align*}
$$

Equality in (1) holds when $\quad p_{i}=q_{i}$ for $i=1,2, \cdots, n$. Therefore the optimizing probabilities are of the form: $p_{i}=\frac{e^{-\beta H_{i}}}{Z(\beta)}$ for $i=1,2, \cdots, n$, where $Z(\beta)=\sum_{i=1}^{n} e^{-\beta H_{i}}$.
Q.E.D.
(b) $-\frac{d}{d \beta} \log Z(\beta)=-\frac{1}{Z(\beta)} \frac{d}{d \beta} Z(\beta)=-\frac{1}{Z(\beta)} \frac{d}{d \beta}\left(\sum_{i=1}^{n} e^{-\beta H_{i}}\right)=\frac{1}{Z(\beta)} \sum_{i=1}^{n} H_{i} e^{-\beta H_{i}}$
$=\sum_{i=1}^{n} \frac{e^{-\beta H_{i}}}{Z(\beta)} H_{i}=\sum_{i=1}^{n} q_{i} H_{i}=U$.
By inequality (1) in part (a) we know: $S_{\max }=\beta U+\log Z(\beta)$. So:
$S_{\text {max }}=\log Z(\beta)-\beta \frac{d}{d \beta} \log Z(\beta)$.
Q.E.D.
(c) $\quad\left(H_{1}, H_{2}, H_{3}\right)=(1,2,3)$. So $\quad U=\sum_{i=1}^{3} q_{i} H_{i}=\frac{e^{-\beta}+2 e^{-2 \beta}+3 e^{-3 \beta}}{e^{-\beta}+e^{-2 \beta}+e^{-3 \beta}}$, and
$S_{\text {max }}=\log Z(\beta)+\beta U=\log \left(e^{-\beta}+e^{-2 \beta}+e^{-3 \beta}\right)+\beta U$. Let β run from $-\infty$ to $+\infty$, we get the following plot (the x axis is U , and the y axis is $S_{\text {max }}$):

