Due (in class) 9am June 1, 2001

## Reading:

Handout "Efficient Erasure Correcting Codes," pp. 569-572.

## Problems to Hand In:

Problem 1. Consider the ensemble of LDPC codes with (left) degree profile ( $\lambda_{2}, \lambda_{3}, \ldots, \lambda_{N}$ ), and constant right degree $a$. If the ensemble rate is $R=4 / 5$, what is the smallest possible value for $a$ ?

Problem 2. Let $H_{1} \leq \cdots \leq H_{n}$ be a fixed list of real numbers, and let $p_{1}, \ldots, p_{n}$ be a corresponding probability density. Define

$$
\begin{aligned}
U & =\langle H\rangle_{p}=\sum_{i} p_{i} H_{i} \\
S & =\langle-\log p\rangle_{p}=-\sum_{i} p_{i} \log p_{i}
\end{aligned}
$$

For each value of $U$ in the range $H_{1} \leq U \leq H_{n}$, let $S_{\max }(U)$ denote the maximum possible value of $S$, i.e.,

$$
S_{\max }(U)=\max \left\{-\sum_{i} p_{i} \log p_{i}: \sum_{i} p_{i} H_{i}=U\right\}
$$

(a) Show that the optimizing probabilites are of the form

$$
p_{i}=p_{i}(\beta)=\frac{e^{-\beta H_{i}}}{Z(\beta)}
$$

where $Z(\beta)$ (the partition function) is defined as

$$
Z(\beta)=\sum_{i} e^{-\beta H_{i}} .
$$

[Hint: If $\left(p_{i}\right)$ is a density such that $\sum_{i} p_{i} H_{i}=U$, define $q_{i}=e^{-\beta H_{i}} / Z(\beta)$, and apply Jensen's inequality to the sum $\sum_{i} p_{i} \log \left(q_{i} / p_{i}\right)$.]
(b) Show that the relationship between $U$ and $S_{\text {max }}$ is given parametrically by the equations

$$
\begin{aligned}
U & =-\frac{d}{d \beta} \log Z(\beta) \\
S_{\max } & =\log Z(\beta)-\beta \frac{d}{d \beta} \log Z(\beta)
\end{aligned}
$$

where the parameter $\beta$ (the inverse temperature) runs from $-\infty$ to $+\infty$.
(c) For $\left(H_{1}, H_{2}, H_{3}\right)=(1,2,3)$, plot the function $S_{\max }$ as a function of $U$.

