EE/Ma 127c Error-Correcting Codes

Draft of May 26, 2001

Anxiao (Andrew) Jiang
311 Moore

Homework Assignment 5, Solutions

Problem 1.

(a) Let $A=\{$ the set of 4×6 binary matrices with exactly 2 ones per column and 3 ones per row $\}, B=\{b \mid b \in A$, all columns in b are distinct $\}, C=\{c \mid c \in A$, there are two columns in c that are the same, but no three columns in c are the same $\}, D=\{d \mid d \in A$, there are three columns in $\quad d$ that are the same $\}$. Then clearly $\quad A=B \cup C \cup D$, and $|A|=|B|+|C|+|D|$.

There are totally $\binom{4}{2}=6$ different vectors of length 4 containing 2 ones. Considering each such vector as a column, we know $|B|=6!=720$.

Consider any matrix c in C. Let $\left\{\begin{array}{llllll}c_{1}, & \underline{c_{2}}, & \underline{c_{3}}, & \underline{c_{4}}, & \underline{c_{5}}, \underline{c_{6}}\end{array}\right\}$ be the 6 columns of c (we are not considering the order of them), without loss of generality say $\underline{c_{1}}=\underline{c_{2}}$. Since $\sum_{i=3}^{6} \underline{c_{i}}=\sum_{i=1}^{6} \underline{c_{i}}=\left(\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right)^{T}$, and no four distinct columns with 2 ones in each will have the sum $\left(\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right)^{T}$, there must be two columns among $\left\{\underline{c_{3}}, \underline{c_{4}}, \underline{c_{5}}, \underline{c_{6}}\right\}$ th at are the same-WLOG say $\underline{c_{3}}=\underline{c_{4}}$. Since $\quad \sum_{i=5}^{6} c_{i}=\sum_{i=1}^{6} \underline{c_{i}}=\left(\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right)^{T}, \quad \underline{c_{5}} \neq \underline{c_{6}}$. By the definition of C we have $c_{1} \neq c_{3} \neq c_{5} \neq c_{6}$. Since there are 3 ones in each row of c, $\underline{c_{1}}+\underline{c_{3}}=\left(\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right)^{T}$, and $\underline{c_{5}}+\underline{c_{6}}=\left(\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right)^{T}$. There are $\binom{3}{1}$ ways to select $\underline{c_{1}}$ and $\underline{c_{3}}$, and $\binom{6}{2}\binom{4}{2}$ ways to select the ordered positions of $\underline{c_{1}}, \underline{c_{2}}$ and $\underline{c_{3}}, \underline{c_{4}}$. Now fix $\underline{c_{1}}, \underline{c_{2}}, \underline{c_{3}}, \underline{c_{4}}$ as well as their positions, there are 2 ways to select $\underline{c_{5}}$ and $\underline{c_{6}}$, and 2 ! ways to select their ordered positions. So there are totally $\binom{3}{1}\binom{6}{2}\binom{4}{2} \cdot 2 \cdot 2!=1080$ matrices in C.

Consider any matrix d in D. Let $\left\{\begin{array}{llllll}\underline{d_{1}}, \underline{d_{2}}, \underline{d_{3}}, & \underline{d_{4}}, & \underline{d_{5}}, \underline{d_{6}}\end{array}\right\}$ be the 6 columns of d (we are not considering the order of them), without loss of generality say $\underline{d_{1}}=\underline{d_{2}}=\underline{d_{3}}$. Then it's easy to see that $\underline{d_{4}}=\underline{d_{5}}=\underline{d_{6}}$, and $\underline{d_{1}}+\underline{d_{4}}=\left(\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right)^{T}$. There are $\binom{3}{1}$ ways to select $\underline{d_{1}}$ and $\underline{d_{4}}$, and $\binom{6}{3}$ ways to select the ordered positions of the 6 columns. So $|D|=\binom{3}{1}\binom{6}{3}=60$.

Therefore there are $|A|=720+1080+60=18604 \times 6$ binary matrices with exactly 2 ones per column and 3 ones per row. It's simple to figure out that all matrices in B and C have rank 3, while all matrices in D have rank 2. So among those 1860 matrices there are $|B|+|C|=720+1080=1800$ of them which can be parity check matrices for $(6,3)$ codes.
(b) From part (a) we know there are $|B|=720$ such matrices with distinct columns.

The significance of having distinct columns in a parity -check matrix is that a code's weight ≥ 3 (which means it can correct single -bit errors) if and only if all the columns in the parity -check matrix are distinct. If two columns in the parity -check matrix are the same, then the two single-bit error patterns whose error positions correspond to those two columns respectively will have the same syndrome.
(c) There are $\frac{\prod_{i=0}^{k-1}\left(2^{n}-2^{i}\right)}{\prod_{i=0}^{k-1}\left(2^{k}-2^{i}\right)}=\frac{\prod_{i=0}^{2}\left(2^{6}-2^{i}\right)}{\prod_{i=0}^{2}\left(2^{3}-2^{i}\right)}=1395 \quad(6,3)$ binary linear codes.
(d) From part (a) we know the $|B|+|C|=720+1080=1800$ matrices in set B and C can be parity-check matrices for $(6,3)$ codes. For any matrix, say matrix x, in set B or C, if we permute the rows of x, we get a matrix different from x because all rows of x are distinct, but clearly that matrix is also in set B or C and is a parity-check matrix for the same code as x is. There are 4! ways to permute the rows of x. Now we want to ask if there is a matrix in set B or C which is a parity -check matrix for the same code as x is, but whose rows are not the permutation of x 's rows. The answer is no. To show that let's suppose such a matrix exists, and call it y. Then there is a row in y which contains 3 ones and is not a row in x-however it must be the summation of some rows in x. Each row in x contains 3 ones, so the summation of any two rows in x will have an even number of ones in it. All the four rows in x sum up to be ($\left.\begin{array}{llllll}0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$, so the summation of any three rows of x is just another row of x. Therefore there is a contradiction, and y doesn't exist! So two matrices in set B or C are parity -check matrices for the same code if and only if their rows are permutations of each other. So there are $\frac{1800}{4!}=75$ codes in part (c) with parity-check matrices of the form in part (a).

For the second question of part (d) the above reasoni ng also holds. So there are $\frac{|B|}{4!}=\frac{720}{4!}=30$ codes in part (c) with parity-check matrices of the form in part (b).

Problem 2.

The condition $p_{i}(0) \rightarrow 0$ is equivalent to the condition $p \lambda(\rho(x))<x \quad \forall 0<x \leq 1$. Since for $(3,6)$ LDPC codes

$$
\lambda(x)=x^{j-1}=x^{3-1}=x^{2},
$$

$\rho(x)=1-(1-x)^{k-1}=1-(1-x)^{6-1}=1-(1-x)^{5}$, the condition becomes:
$p\left[1-(1-x)^{5}\right]^{2}<x \quad \forall 0<x \leq 1$. By using matlab/mathematica/maple/... we find the threshold value for $p(0 \leq p \leq 1)$ is 0.429 .

