Homework Assignment 4-
Due (in class) 9am May 18, 2001

Reading:

> Handout "The Serial Concatenation of Interleaved Codes ..., " Secs. I, IIB, and V.

Problems to Hand In:

Problem 1. In class on Friday May 11, I discussed the iterative decoding of "serial", turbo codes, with a structure like the one shown in Figure 14b of the handout "The Serial Concatenation of Interleaved Codes." I emphasized that the componet "APP" decoder for the outer code (the block labelled "MAP outer code" in Figure 14b) must be capable of producing APP's for the encoded bits as well as the information bits. I also gave as one example the "Repeat-Accumulate' code, in which the outer code is a simple "repeat each bit q times" device.
(a) Describe an efficient APP decoding rule for the information and encoded bits for a q-fold repetition code.
(b) Next consider the $(6,2)$ code obtained by repeating each of the two information bits three times: in other words, the codeword associated with the information word (u_{1}, u_{2}) is $\left(u_{1}, u_{1}, u_{1}, u_{2}, u_{2}, u_{2}\right)$. Suppose the a priori log-likelihoods for the information bits (u_{1}, u_{2}) are

$$
\operatorname{LLR}_{1}^{(i)}=0.1, \quad \operatorname{LLR}_{2}^{(i)}=-0.1
$$

and the log-likelihoods observed from the channel of the 6 coded bits are

$$
\begin{aligned}
& \operatorname{LLR}_{1}^{(o)}=0.2, \quad \operatorname{LLR}_{2}^{(o)}=0.1, \quad \operatorname{LLR}_{3}^{(o)}=0.0 \\
& \operatorname{LLR}_{4}^{(o)}=0.0, \quad \operatorname{LLR}_{5}^{(o)}=-0.1, \quad \operatorname{LLR}_{6}^{(o)}=-0.2
\end{aligned}
$$

Compute the APP's (In log-likelihood form) for the two information bits and the six code bits.

Problem 2. In class Monday, May 14, I discussed a "linear congruential" method of generating random permutations of length $n=p-1$, where p is an odd prime, i.e., those of the form

$$
\pi(i)=b a^{i}(\bmod p),
$$

for $i=1,2, \ldots, n$. I stated that experiments with $p=1103$ indicated that the choice $b=1$ and $a=127$ was better than e.g. $a=3,5,7$. Ling Li has suggested that this may be due to correlations between $\pi(i)$ and $\pi(i+1)$.
Test this suggestion by making a scatter plot of $\pi(i)$ vs. $\pi(i+1)$ for $p=1103$ and $a=3,5,7,9$, and 127 , and comment. What about $\pi(i)$ vs. $\pi(i+2)$, etc. ?

Problem 3. In class on Wednesday, May 16 I briefly discussed the problem of counting the number of distinct RA codes with parameters q and k, where q is the repetition number
and k is the number of information bits. Taking into account the freedom of choosing the interleaver, how many distinct (q, k) RA codes are there? [Hint: the answer is not ($q k)!$.]

