EE/Ma 127c Error-Correcting Codes
Draft of April 30, 2001

Anxiao (Andrew) Jiang
311 Moore

Homework Assignment 3, Solutions
Problem 1.
$\operatorname{Pr}\left\{X_{i}=j \mid \underset{--}{Y}=y^{e}\right\}=\operatorname{Pr}\left\{X_{i}=j, Y_{1}=1, Y_{2}=2, Y_{3}=2, Y_{4}=0\right\} / \operatorname{Pr}\left\{Y_{1}=1, Y_{2}=2, Y_{3}=2, Y_{4}=0\right\}$

Define $K \stackrel{\Delta}{=} 1 / \operatorname{Pr}\left\{Y_{1}=1, Y_{2}=2, Y_{3}=2, Y_{4}=0\right\}$, then
$\operatorname{Pr}\left\{X_{i}=j \mid \underline{--} \mathcal{Y}_{--}^{e}\right\}=K \sum_{X: X_{i}=j} \operatorname{Pr}\left\{X_{1}, X_{2}, X_{3}, X_{4}, Y_{1}, Y_{2}, Y_{3}, Y_{4}\right\}=K \sum_{-x: X_{i}=j} \prod_{k=1}^{4} \operatorname{Pr}\left\{X_{k} \mid X_{k-1}\right\} \operatorname{Pr}\left\{Y_{k}=y_{k}^{e} \mid X_{k}\right\}$.
One way to compute is by using the BCJR algorithm. And notice that for any i,
$1 / K=\operatorname{Pr}\left\{Y_{1}=1, Y_{2}=2, Y_{3}=2, Y_{4}=0\right\}=\sum_{j=0}^{2} \operatorname{Pr}\left\{X_{i}=j, Y_{1}=1, Y_{2}=2, Y_{3}=2, Y_{4}=0\right\}$.
Below we give the values of $\operatorname{Pr}\left\{X_{i}=j \mid \underline{Y}=y^{e}\right\}$ for $i=1,2,3,4$ and $j=0,1,2$:

$\operatorname{Pr}\left\{X_{i}=j \mid \underset{--}{\left.Y=y_{--}^{e}\right\}}\right.$	$i=1$	$i=2$	$i=3$	$i=4$
$j=0$	$\frac{3849}{43993}=0.0875$	$\frac{2679}{43993}=0.0609$	$\frac{29349}{43993}=0.6671$	$\frac{38264}{43993}=0.870$
$j=1$	$\frac{40144}{43993}=0.913$	$\frac{3426}{43993}=0.0779$	$\frac{11380}{43993}=0.259$	$\frac{3453}{43993}=0.0785$
$j=2$	0	$\frac{37888}{43993}=0.861$	$\frac{3264}{43993}=0.0742$	$\frac{2276}{43993}=0.0517$

Problem 2.

(a) Proof: $p\left(x_{2}, x_{3}\right)=\sum_{x_{1}, x_{4}} p\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\sum_{x_{1}} \sum_{x_{4}} p\left(x_{1}\right) p\left(x_{2}\right) p\left(x_{3} \mid x_{1}\right) p\left(x_{4} \mid x_{1}, x_{2}\right)$
$=p\left(x_{2}\right) \sum_{x_{1}} p\left(x_{1}\right) p\left(x_{3} \mid x_{1}\right) \sum_{x_{4}} p\left(x_{4} \mid x_{1}, x_{2}\right)=p\left(x_{2}\right) \sum_{x_{1}} p\left(x_{1}\right) p\left(x_{3} \mid x_{1}\right)$ $=p\left(x_{2}\right) p\left(x_{3}\right)$.
(b) The only other independent pair are X_{1} and X_{2}.
(c) For any variable X in the Bayesian network, define a 'source set' of X , denoted by $\mathrm{S}(\mathrm{X})$, as: $S(X)=\{Z \mid$ There exists a path from Z to X$\} \cup\{X\}$.
Then we claim:
$\forall X, Y, \mathbf{X}$ and Y are independent if $S(X) \cap S(Y)=\varnothing$.
The above claim is the same as:
For any two variables X and Y in the Bayesian network, if there is no path from X to Y or from Y to X, and there is no such variable Z that there is a path from Z to X and there is also a path from Z to Y, then X and Y are independent.
We give a proof below.
Proof: Let $V=\{$ All the random variables in the Bayesian network $\}$. Suppose for

$$
\begin{aligned}
& p(X, Y)=\sum_{V-\{X, Y\}} p(V)=\sum_{S(X)-\{X\}} \sum_{S(Y)-\{Y\}} \sum_{V-S(X)-S(Y)} p(V) \\
= & \sum_{S(X)-\{X\}} \sum_{S(Y)-\{Y\}} \sum_{V-S(X)-S(Y)} p(S(X)) p(S(Y)) p(V-S(X)-S(Y) \mid S(X), S(Y)) \\
= & \sum_{S(X)-\{X\}} p(S(X)) \sum_{S(Y)-\{Y\}} p(S(Y)) \sum_{V-S(X)-S(Y)} p(V-S(X)-S(Y) \mid S(X), S(Y)) \\
= & \sum_{S(X)-\{X\}} p(S(X)) \sum_{S(Y)-\{Y\}} p(S(Y)) \\
= & p(X) p(Y) .
\end{aligned}
$$

Therefore X and Y are independent. And that proves our claim.

Problem 3.

(a) pqr multiplications are required to compute the product AB .
(b) For (AB)C, pqr+prs multiplications are required.

For $A(B C)$, qrs+pqs multiplications are required.
(c) $\mathrm{pqr}+\mathrm{prs}=7500, \mathrm{qrs}+\mathrm{pqs}=75000$, so the best way to compute ABC is to parenthesize $A B C$ as $(A B) C$.

