EE/Ma 127c Error-Correcting Codes
draft of April 25, 2001
R. J. McEliece

162 Moore

Homework Assignment 3-Final Version
Due (in class) 9am April 27, 2001

Reading:

Handout "The optimal decoding of linear codes for mimimizing symbol error rate." handout:"Turbo decoding as an instance of ... Belief propagation," Section IV.
Problems to Hand In:
Problem 1. Consider a finite-state (state set $\{0,1,2\}$) Markov chain $X_{0}, X_{1}, X_{2}, \ldots$, governed by the following state transition matrix:
0
0
1
2 $\left(\begin{array}{ccc}1 / 2 & 1 / 2 & 0 \\ 1 / 3 & 0 & 2 / 3 \\ 2 / 3 & 1 / 3 & 0\end{array}\right)$

Suppose that the chain is initialzed with $X_{0}=0$. The successive terms $X_{1}, X_{2}, X_{3}, X_{4}$ are then transmitted through a noisy channel with transiton matrix

$$
P=\begin{aligned}
& \\
& 0 \\
& 1 \\
& 2
\end{aligned}\left(\begin{array}{ccc}
0 & 1 & 2 \\
.8 & .1 & .1 \\
.1 & .8 & .1 \\
.1 & .1 & .8
\end{array}\right)
$$

and observed to be $Y_{1}=1, Y_{2}=2, Y_{3}=2, Y_{4}=0$. Based on this evidence (call it \mathcal{E}), compute the a posteriori probabilities

$$
\operatorname{Pr}\left\{X_{i}=j \mid \mathcal{E}\right\}, \quad \text { for } i=1,2,3,4 \text { and } j=0,1,2 .
$$

Problem 2. In class on Monday April 23, I discussed the following simple Bayesian network:

In particular, I discussed the problem of inferring X_{2} from X_{3}. However, after class several students (including Anxiao and Jeremy) pointed out to me that X_{2} and X_{3} are
actually independent, so that observing X_{3} tells us nothing about X_{2} ! This problem is based on that mistake I made.
(a) Show that X_{2} and X_{3} are indeed independent, i.e., the joint density function $p\left(x_{2}, x_{3}\right)$ factors as $p\left(x_{2}\right) p\left(x_{3}\right)$.
(b) Which (if any) other pairs X_{i}, X_{j} from the given Bayesian network are independent?
(c) See if you can guess (not prove) an easy general way to predict which pairs of random variables in an arbitrary Bayesian network are independent.

Problem 3. let A be a $p \times q$ matrix, let B be a $q \times r$ matrix, and let C be a $r \times s$ matrix.
(a) How many scalar multiplications are required to compute the product $A B$?
(b) How many scalar multiplications are required to compute the product $A B C$ when it is parenthesized as $(A B) C ? A(B C)$?
(c) Suppose $p=10, q=100, r=5$, and $s=50$. What is the best way to compute $A B C$?

