Solutions to Homework Assignment 2

Problem 1.

From the problem, we get the following edge weight matrices:
$W_{1}=\left[\begin{array}{ll}1 & 2\end{array}\right], W_{2}=\left[\begin{array}{lll}4 & 0 & 2 \\ 2 & 8 & 0\end{array}\right], W_{3}=\left[\begin{array}{lll}4 & 0 & 2 \\ 8 & 1 & 2 \\ 0 & 1 & 4\end{array}\right], W_{4}=\left[\begin{array}{ll}2 & 0 \\ 4 & 2 \\ 0 & 1\end{array}\right], W_{5}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$.
(a) The α_{i} 's are defined as $\alpha_{0}=1, \alpha_{i}=\alpha_{i-1} W_{i}$ otherwise. Carrying out these computations gives us
$\alpha_{0}=[1], \alpha_{1}=[1,2], \alpha_{2}=[8,16,2], \alpha_{3}=[160,18,56], \alpha_{4}=[392,92], \alpha_{5}=[576]$.
Similarly, the β_{i} 's are defined as $\beta_{5}=1, \beta_{i-1}=W_{i} \beta_{i}$ otherwise. This gives us
$\beta_{5}=[1]^{T}, \beta_{4}=[1,2]^{T}, \beta_{3}=[2,8,2]^{T}, \beta_{2}=[12,28,16]^{T}, \beta_{1}=[80,248]^{T}, \beta_{0}=[576]^{T}$.
Here, A^{T} denotes the transpose of the matrix A.
(b) Let μ_{i} be a vector the size of β_{i}, whose k th element represents the flow through the k depth vertex at the i th stage of the trellis. Then we know that μ_{i} is given by $\mu_{i}(k)=\alpha_{i}(k) \beta_{i}(k)$. This gives us

$$
\begin{gathered}
\mu_{0}=[576]^{T}, \mu_{1}=[80,496]^{T}, \mu_{2}=[96,448,32]^{T}, \mu_{3}=[320,144,112]^{T}, \\
\mu_{4}=[392,184]^{T}, \mu_{5}=[576]^{T} .
\end{gathered}
$$

Similarly, let ν_{i} be a matrix the size of W_{i}, each of whose elements represents the flow through the edge whose weight is given by the corresponding element of W_{i}. Then we know that ν_{i} is given by $\nu_{i}(j, k)=\alpha_{i-1}(j) W_{i}(j, k) \beta_{i}(k)$. This gives us

$$
\begin{gathered}
\nu_{1}=\left[\begin{array}{ll}
80 & 496
\end{array}\right], \nu_{2}=\left[\begin{array}{ccc}
48 & 0 & 32 \\
48 & 448 & 0
\end{array}\right], \nu_{3}=\left[\begin{array}{ccc}
64 & 0 & 32 \\
256 & 128 & 64 \\
0 & 16 & 16
\end{array}\right] \\
\nu_{4}
\end{gathered}=\left[\begin{array}{cc}
320 & 0 \\
72 & 72 \\
0 & 112
\end{array}\right], \nu_{5}=\left[\begin{array}{l}
392 \\
184
\end{array}\right] .
$$

(c) Denote by α_{i}^{\prime} the approximation to $\log _{2} \alpha_{i}$ computed by the algorithm mentioned in this part, and similarly for β_{i}^{\prime}. We get the following values for α_{i}^{\prime} and $\beta_{i}{ }^{\prime}$.

$$
\begin{gathered}
\alpha_{0}^{\prime}=[0], \alpha_{1}^{\prime}=[0,1], \alpha_{2}^{\prime}=[2,4,1], \alpha_{3}^{\prime}=[7,4,5], \alpha_{4}^{\prime}=[8,5], \alpha_{5}^{\prime}=[8] . \\
\beta_{0}^{\prime}=[8]^{T}, \beta_{1}^{\prime}=[5,7]^{T}, \beta_{2}^{\prime}=[3,4,3]^{T}, \beta_{3}^{\prime}=[1,2,1]^{T}, \beta_{4}^{\prime}=[0,1]^{T}, \beta_{5}^{\prime}=[0]^{T} .
\end{gathered}
$$

Problem 2.

Let $f(\Delta)$ be the function to be approximated and $g(\Delta)$ the approximating function. Also, let us use the error measure suggested in the problem, i.e.

$$
E(f, g)=\sup _{\Delta}|f(\Delta)-g(\Delta)|
$$

Our job is to choose values of $\Delta_{1}, \Delta_{2}, \Delta_{3}$ and $y_{1}, y_{2}, y_{3}, y_{4}$ such that this error measure is minimized. Firstly, it is clear that for fixed values of the Δ_{i} 's, the y_{i} 's should be midpoint of the spread of $f(\Delta)$ over the corresponding interval. Since $f(\Delta)$ is a decreasing function, we get
$y_{1}=\frac{f(0)+f\left(\Delta_{1}\right)}{2}, y_{2}=\frac{f\left(\Delta_{1}\right)+f\left(\Delta_{2}\right)}{2}, y_{3}=\frac{f\left(\Delta_{2}\right)+f\left(\Delta_{3}\right)}{2}, y_{4}=\frac{f\left(\Delta_{4}\right)+f(\infty)}{2}$.
For these choices of the y_{i} 's, the error measure then takes the value equal to half the maximum spread of $f(\Delta)$ over any of these intervals. The total spread of $f(\Delta)$ ever the real line is $\log 2$. Therefore, we should make
the spread equal to $\log 2 / 4$ on each of these intervals to minimize the error measure. Therefore, we get

$$
f\left(\Delta_{1}\right)=3 \log 2 / 4, f\left(\Delta_{2}\right)=\log 2 / 2, f\left(\Delta_{3}\right)=\log 2 / 4
$$

From this, we then get

$$
y_{1}=7 \log 2 / 8, y_{2}=5 \log 2 / 8, y_{3}=3 \log 2 / 8, y_{4}=\log 2 / 8
$$

Problem 3.

(a) Let us verify the distributive law in each case.
1)Sum-Product: $(a . b)+(a . c)=a .(b+c)$. Usual distributive law.
2)Min-Product: $\min (a . b, a . c)=a \cdot \min (b, c)$. True if a is positive, which it is.
3)Max-product: $\max (a . b, a . c)=a \cdot \max (b, c)$. Equivalent to b).
4)Min-Sum: $\min (a+b, a+c)=a+\min (b, c)$. Always true.
5)Max-Sum: $\max (a+b, a+c)=a+\max (b, c)$. Similar to d).
(b) To go from min-sum to max-sum and vice versa, you use the $-x$ transformation, since this transformation preserves the sum operation and converts the min to a max. For exactly the same reasons, to go from min-product to max-product, you use the $1 / x$ transformation. To convert a sum to a product, you use the e^{x} transformation. Using these argumants, we end up with the following matrix.

$$
\left(\begin{array}{cccc}
x & 1 / x & \log x & -\log x \\
1 / x & x & -\log x & \log x \\
e^{x} & e^{-x} & x & -x \\
e^{-x} & e^{x} & -x & x
\end{array}\right)
$$

The rows and the columns denote, in order, the semirings min-product, max-product, min-sum and max-sum.

