
EE/Ma 127c Error-Correcting Codes                                               Anxiao (Andrew) Jiang 
Draft of April 12, 2001                                                                                  311 Moore 
                                         Homework Assignment 1, Solutions 
 
Problem 1.  

(a) Maximum-likelihood decision rule: Decide that (+1,+1,…,+1) is transmitted if 
and only if: Pr((y1,y2,…,yn) is received|(x1,x2,…,xn)=(+1,+1,…,+1))  

                       ≥Pr((y1,y2,…,yn) is received|(x1,x2,…,xn)=(-1,-1,…,-1)). 
      Since (y1,y2,…,yn) are i.i.d. Gaussians with mean xi and variance 2σ , the decision 
rule is equivalent to: Decide that (+1,+1,…,+1) is transmitted if and only if: 
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      So the maximum-likelihood decoding algorithm is: 

      Decide that (+1,+1,…,+1) is transmitted if and only if .0
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(b) Define: 
     )},1,...,1,1(),...,,Pr{( 21)1( +++=∆+ nxxxp  )}1,...,1,1(),...,,Pr{( 21)1( −−−=∆− nxxxp . 

     Then clearly ,1)1()1( =+ −+ pp  and the decoder error probability is: 
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 is Gaussian with mean +n or –n and variance 2σn , so 
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(c) There error probability of uncoded BPSK is also ).
2

(
0N

E
Q b  So they have the 

same performance. 
 
Problem 2.  
Let Π be the permutation matrix of the interleaver (*), then the generator matrix of the 
(8,4) code is ),( GG Π , which is a 4 by 8 matrix. Notice that each row of G has weight 2, 

and each row of ΠG is also a row in G, so each row of ),( GG Π —which is a codeword—
has weight 4. So we know the minimum distance of the (8,4) code is at most 4. 
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),( GG , which has rank 4. So the code with Π as the 

interleaver will have dimension 4. And by checking the codewords we find that the 

minimum weight of all the non-zero codewords is 4. So ��
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 is a “best” 

interleaver we are looking for. 
 
( (*) Note: ‘Π is the permutation matrix of the interleaver’ means that if the input of the 
interleaver is ),,,( 4321 uuuu , then the output of the interleaver is Π),,,( 4321 uuuu .) 

 
(Note: A more careful analysis of the code will show that there exist totally four “best” 
interleavers, whose corresponding permutation matrices are: 
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Problem 3. 
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Then the a posteriori probability for ui is 
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Problem 4. 

(a) Proof: Suppose there are m paths from u to x—P1, P2, …, P m, and there are n 
paths from y to v—Q1, Q2, …, Qn. Then the set of paths from u to v through edge 
e is: 

             .,...,2,1|{ mieQP ji = .}.,...,2,1 nj =  
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                       = ),()(),( vyewxu µµ .                                                        Q.E.D. 
(b) If we use formula (1), we’ll have 2mn multiplications and mn-1 additions. 

If we use formula (2), we’ll have only 2 multiplications and m+n-2 additions. 


