Homework Assignment 1, Solutions

Problem 1.

(a) Maximum-likelihood decision rule: Decide that $(+1,+1, \ldots,+1)$ is transmitted if and only if: $\operatorname{Pr}\left(\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}}\right)\right.$ is received $\left.\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=(+1,+1, \ldots,+1)\right)$

$$
\geq \operatorname{Pr}\left(\left(y_{1}, y_{2}, \ldots, y_{n}\right) \text { is received }\left(x_{1}, x_{2}, \ldots, x_{n}\right)=(-1,-1, \ldots,-1)\right)
$$

Since $\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ are i.i.d. Gaussians with mean x_{i} and variance σ^{2}, the decision rule is equivalent to: Decide that $(+1,+1, \ldots,+1)$ is transmitted if and only if:

$$
\begin{aligned}
& \prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{\left(y_{i}-1\right)^{2}}{2 \sigma^{2}}} \geq \prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{\left(y_{i}+1\right)^{2}}{2 \sigma^{2}}} \Leftrightarrow e^{-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(y_{i}-1\right)^{2}} \geq e^{-\frac{1}{2 \sigma^{2} \sum_{i=1}^{n}\left(y_{i}+1\right)^{2}}} \\
\Leftrightarrow & \sum_{i=1}^{n}\left(y_{i}-1\right)^{2} \leq \sum_{i=1}^{n}\left(y_{i}+1\right)^{2} \Leftrightarrow \sum_{i=1}^{n} y_{i} \geq 0
\end{aligned}
$$

So the maximum-likelihood decoding algorithm is:
Decide that $(+1,+1, \ldots,+1)$ is transmitted if and only if $\sum_{i=1}^{n} y_{i} \geq 0$.
(b) Define:
$p_{(+1)} \underline{\underline{\Delta}} \operatorname{Pr}\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right)=(+1,+1, \ldots,+1)\right\}, \quad p_{(-1)} \underline{\underline{\Delta}} \operatorname{Pr}\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right)=(-1,-1, \ldots,-1)\right\}$.
Then clearly $p_{(+1)}+p_{(-1)}=1$, and the decoder error probability is:
$P_{\text {error }}=\operatorname{Pr}\left\{\sum_{i=1}^{n} y_{i}<0 \mid\left(x_{1}, x_{2}, \ldots, x_{n}\right)=(+1,+1, \ldots,+1)\right\} \cdot p_{(+1)}+$
$\operatorname{Pr}\left\{\sum_{i=1}^{n} y_{i} \geq 0 \mid\left(x_{1}, x_{2}, \ldots, x_{n}\right)=(-1,-1, \ldots,-1)\right\} \cdot p_{(-1)}$.
We know that $\sum_{i=1}^{n} y_{i}$ is Gaussian with mean +n or -n and variance $n \sigma^{2}$, so

$$
\operatorname{Pr}\left\{\sum_{i=1}^{n} y_{i}<0 \mid\left(x_{1}, x_{2}, \ldots, x_{n}\right)=(+1,+1, \ldots,+1)\right\}
$$

$$
=\operatorname{Pr}\left\{\left.\frac{\sum_{i=1}^{n} y_{i}-n}{\sqrt{n} \sigma}<-\frac{n}{\sqrt{n} \sigma} \right\rvert\,\left(x_{1}, x_{2}, \ldots, x_{n}\right)=(+1,+1, \ldots,+1)\right\}=Q\left(\frac{\sqrt{n}}{\sigma}\right)=Q\left(\sqrt{\frac{2 E_{b}}{N_{0}}}\right) .
$$

Similarly, $\operatorname{Pr}\left\{\sum_{i=1}^{n} y_{i} \geq 0 \mid\left(x_{1}, x_{2}, \ldots, x_{n}\right)=(-1,-1, \ldots,-1)\right\}=Q\left(\sqrt{\frac{2 E_{b}}{N_{0}}}\right)$.
Therefore $P_{\text {error }}=Q\left(\sqrt{\frac{2 E_{b}}{N_{0}}}\right) \cdot\left(p_{(+1)}+p_{(-1)}\right)=Q\left(\sqrt{\frac{2 E_{b}}{N_{0}}}\right)$.
(c) There error probability of uncoded BPSK is also $\quad Q\left(\sqrt{\frac{2 E_{b}}{N_{0}}}\right)$. So they have the same performance.

Problem 2.

Let Π be the permutation matrix of the interleaver $\quad{ }^{(*)}$, then the generator matrix of the $(8,4)$ code is $(G, \Pi G)$, which is a 4 by 8 matrix. Notice that each row of G has weight 2 , and each row of ΠG is also a row in G , so each row of $(G, \Pi G)$-which is a codewordhas weight 4 . So we know the minimum distance of the $(8,4)$ code is at most 4 .

Let $\Pi=\left(\begin{array}{llll}0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}\right)$, then the generator matrix becomes:
$(G, \Pi G)=\left(\begin{array}{llllllll}1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 & 0 & 1\end{array}\right)$, which has rank 4. So the code with Π as the interleaver will have dimension 4 . And by checking the codewords we find that the minimum weight of all the n on-zero codewords is 4. So $\Pi=\left(\begin{array}{llll}0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}\right)$ is a "best", interleaver we are looking for.
(${ }^{(*)}$ Note: ' Π is the permutation matrix of the interleaver' means that if the input of the interleaver is $\left(u_{1}, u_{2}, u_{3}, u_{4}\right)$, then the output of the interleaver is $\left(u_{1}, u_{2}, u_{3}, u_{4}\right) \Pi$.)
(Note: A more careful analysis of the code will show that there exist totally four "best" interleavers, whose corresponding permutation matrices are:

$$
\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right),\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right),\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right) \text { and }\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right) .
$$

Problem 3.

$$
\begin{aligned}
& \operatorname{Pr}\left\{u_{i}=a \mid Y=y\right\}=\frac{1}{\operatorname{Pr}\{Y=y\}} \sum_{u: u_{i}=a} \operatorname{Pr}\{Y=y \mid U=u\} \cdot \operatorname{Pr}\{U=u\} \\
& =\frac{1}{\operatorname{Pr}\{Y=y\}} p^{0}(a) \sum_{u: u_{i}=a} \operatorname{Pr}\{Y=y \mid X=u G\} \prod_{j \neq i} p^{0}\left(u_{j}\right)
\end{aligned}
$$

Let $Q_{i}(a) \triangleq \sum_{u: u_{i}=a} \operatorname{Pr}\{Y=y \mid X=u G\} \prod_{j \neq i} p^{0}\left(u_{j}\right)$, then
$Q_{1}(a)=\operatorname{Pr}\{Y=y \mid X=(a, 0) G\} p^{0}(0)+\operatorname{Pr}\{Y=y \mid X=(a, 1) G\} p^{0}(1)$,
$Q_{2}(a)=\operatorname{Pr}\{Y=y \mid X=(0, a) G\} p^{0}(0)+\operatorname{Pr}\{Y=y \mid X=(1, a) G\} p^{0}(1)$.
Then the a posteriori probability for u_{i} is

$$
\Lambda_{i}=\log \frac{\operatorname{Pr}\left\{u_{i}=0 \mid Y=y\right\}}{\operatorname{Pr}\left\{u_{i}=1 \mid Y=y\right\}}=\log \frac{p^{0}(0)}{p^{0}(1)}+\log \frac{Q_{i}(0)}{Q_{i}(1)},
$$

and the "extrinsic information" for u_{i} is $\Lambda_{i}^{(e x t)}=\log \frac{Q_{i}(0)}{Q_{i}(1)}$.
(1) $p^{0}(0)=p^{0}(1)=\frac{1}{2}, y=A B C D$. We have $\quad Q_{1}(0)=\frac{5}{2^{10}}, \quad Q_{1}(1)=\frac{17}{2^{13}}, \quad Q_{2}(0)=\frac{3}{2^{10}}$, $Q_{2}(1)=\frac{33}{2^{13}}$. So $\Lambda_{1}=\log \frac{40}{17}, \Lambda_{2}=\log \frac{8}{11}, \Lambda_{1}^{(e x t)}=\log \frac{40}{17}, \Lambda_{2}^{(e x t)}=\log \frac{8}{11}$.

$$
\begin{equation*}
p^{0}(0)=\frac{1}{3}, p^{0}(1)=\frac{2}{3}, y=A B C D . \text { We have } \quad Q_{1}(0)=\frac{3}{2^{9}}, \quad Q_{1}(1)=\frac{3}{2^{11}} \tag{2}
\end{equation*}
$$

$$
Q_{2}(0)=\frac{5}{3 \times 2^{9}}, \quad Q_{2}(1)=\frac{17}{3 \times 2^{11}} . \text { So } \quad \Lambda_{1}=\log 2, \quad \Lambda_{2}=\log \frac{10}{17}, \quad \Lambda_{1}^{(e x t)}=\log 4
$$

$$
\Lambda_{2}^{(e x t)}=\log \frac{20}{17}
$$

Problem 4.

(a) Proof: Suppose there are m paths from u to $x-P_{1}, P_{2}, \ldots, P_{m}$, and there are n paths from y to $v-Q_{1}, Q_{2}, \ldots, Q_{n}$. Then the set of paths from u to v through edge e is:

$$
\begin{align*}
& \left\{P_{i} e Q_{j} \mid i=1,2, \ldots, m . j=1,2, \ldots, n .\right\} . \\
& \therefore \mu_{e}(u, v)=\sum_{i=1}^{m} \sum_{j=1}^{n} w\left(P_{i} e Q_{j}\right)=\sum_{i=1}^{m} \sum_{j=1}^{n} w\left(P_{i}\right) w(e) w\left(Q_{j}\right) \tag{1}\\
& =\left(\sum_{i=1}^{m} w\left(P_{i}\right)\right) w(e)\left(\sum_{j=1}^{n} w\left(Q_{j}\right)\right) \tag{2}\\
& =\mu(u, x) w(e) \mu(y, v) .
\end{align*}
$$

Q.E.D.
(b) If we use formula (1), we'll have 2 mn multiplications and $\mathrm{mn}-1$ additions.

If we use formula (2), we'll have only 2 multiplications and $\mathrm{m}+\mathrm{n}-2$ additions.

