Homework Assignment 1
Due (in class) 9am April 11, 2001
Reading: Johannesson and Zigangorov, Chapter 1, Section 1.5, pp. 23-24.
Johannesson and Zigangorov, Chapter 7, Section 7.1, pp. 317-321.
Handout "Near Shannon Limit ... Turbo-Codes" Sections I and II.
Handout "Turbo Codes for Deep Space Communications" pp. 29-30.
Handout "The Forward-Backward Algorithm"

Problems to Hand In:

Problem 1. (Repetition codes on the AWGN channel.) Consider using the ($n, 1$) repetiton code on the AWGN channel. This code contains just two codewords, viz., $(+1,+1, \ldots,+1)$ and $(-1,-1, \ldots,-1)$. If $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is the transmitted codeword, then $\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ is received, where $y_{i}=x_{i}+z_{i}$, and $\left(z_{1}, z_{2}, \ldots, z_{n}\right)$ are i.i.d. Gaussians with mean zero and variance σ^{2}, where

$$
\sigma^{2}=\left(\frac{2}{n} \frac{E_{b}}{N_{0}}\right)^{-1}
$$

(a) Describe a maximum-likelihood decoding algorithm for this code.
(b) Evaluate the decoder error probability (in terms of E_{b} / N_{0}) for the decoding algorithm you found in part a.
(c) Compare this performance to that of "uncoded BPSK," which was described in class on April 2.

Problem 2. Consider a simple "turbocode" of the following type:

Suppose $u=\left(u_{1}, u_{2},, u_{3}, u_{4}\right)$ and G is the following 4×4 matrix:

$$
G=\left(\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1
\end{array}\right)
$$

Then the overall code is an $(8,4)$ binary linear code. However, there are $4!=24$ choices for the interleaver. The problem: find a "best" interleaver, i.e., one that :
(1) . Ensures that the overall code has dimension 4.
(2) . Maximizes the minimum distance of the code.

Problem 3. Consider the $(4,2)$ binary linear code with generator matrix

$$
G=\left(\begin{array}{llll}
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 1
\end{array}\right)
$$

Thus the information block $\left(u_{1}, u_{2}\right)$ is encoded as $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$, where $x_{1}=u_{1}, x_{2}=u_{2}$, $x_{3}=u_{1}+u_{2}$, and $x_{4}=u_{1}+u_{2}$. Suppose that an unknown codeword is transmitted over the following DMC:

$$
\left.\begin{array}{c}
\\
0 \\
0 \\
1
\end{array} \begin{array}{cccc}
A & B & C & D \\
1 / 2 & 1 / 4 & 1 / 8 & 1 / 8 \\
1 / 8 & 1 / 8 & 1 / 4 & 1 / 2
\end{array}\right) .
$$

(a) Suppose the a priori input distribution is

$$
p^{0}(0)=p^{0}(1)=1 / 2,
$$

and ther received word is $A B C D$. Compute the a posteriori probabilities for u_{1} and u_{2} in log-likelihood form. What is the "extrinsic information" (in log-likelihood form) for u_{1} and u_{2} ?
(b) Now suppose the a priori input distribution is

$$
p^{0}(0)=1 / 3, \quad p^{0}(1)=2 / 3
$$

and the received word is still $A B C D$. Answer the same questions.
Problem 4. In class on April 9, I proved thatif u, v, and x are vertices in a trellis, that

$$
\mu_{x}(u, v)=\mu(u, x) \mu(x, v) .
$$

(a) Now suppose that u and v are vertices, and e is an edge. Prove that

$$
\mu_{e}(u, v)=\mu(u, x) w(e) \mu(y, v)
$$

where x is the initial vertex and y is the final vertex of e.
(b) Discuss the computational savings implied by the result of part (a).

