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Preface

The Noisy Channel Coding Theorem discovered by C. E. Shannon in 1948 of-
fered communication engineers the possibility of reducing error rates on noisy
channels to negligible levels without sacri�cing data rates. The primary obstacle
to the practical use of this theorem has been the equipment complexity and the
computation time required to decode the noisy received data.

This monograph presents a technique for achieving high data rates and neg-
ligible error probabilities on noisy channels with a reasonable amount of equip-
ment. The advantages and disadvantages of this technique over other techniques
for the same purpose are neither simple nor clear-cut, and depend primarily
upon the channel and the type of service required. More important than the
particular technique, however, is the hope that the concepts here will lead to
new and better coding procedures.

The chapters of the monograph are arranged in such a way that with the
exception of Chapter 5 each chapter can be read independently of the others.
Chapter 1 sets the background of the study, summarizes the results, and briey
compares low-density coding with other coding schemes. Chapter 2 analyzes
the distances between code words in low-density codes and Chapter 3 applies
these results to the problem of bounding the probability of decoding error that
can be achieved for these codes on a broad class of binary-input channels. The
results of Chapter 3 can be immediately applied to any code or class of codes
for which the distance properties can be bounded. Chapter 4 presents a simple
decoding algorithm for these codes and analyzes the resulting error probabil-
ity. Chapter 5 briey extends all the previous results to multi-input channels,
and Chapter 6 presents the results of computer simulation of the low-density
decoding algorithm.

The work reported here is an expanded and revised version of my doctoral
dissertation, completed in 1960 in the Department of Electrical Engineering,
M.I.T. I am grateful to my thesis supervisor, Professor Peter Elias, and to
my thesis readers, Professors Robert M. Fano and John M. Wozencraft, for
assistance and encouragement both during the course of the thesis and later.

This research was made possible in part by support extended by the Research
Laboratory of Electronics of the Massachusetts Institute of Technology, which is
supported in part by the U.S. Army, the Air Force O�ce of Scienti�c Research,
and the O�ce of Naval Research; additional support was received through the
National Science Foundation (Grant G-16526) and the National Institute of
Health (Grant MH-04737-03).

Much of Chapter 4 is reprinted with permission of the editors from an article
by the author in the Transactions of the I.R.E., IT{9, pages 21 to 28.

The experimental results in Chapter 6 were obtained in part through the
support of the Rome Air Development Center and in part through the support
of the M.I.T. Computation Center.
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1 Introduction

1.1 Coding for Digital Data Transmission

The need for e�cient and reliable digital data communication systems has been
rising rapidly in recent years. This need has been brought on by a variety of
reasons, among them being the increase in automatic data processing equipment
and the increased need for long range communication. Attempts to develop data
systems through the use of conventional modulation and voice transmission
techniques have generally resulted in systems with relatively low date rates and
high error probabilities.

A more fundamental approach to the problems of e�ciency and reliability
in communication systems is contained in the Noisy Channel Coding theorem
developed by C. E. Shannon [15, 4] in 1948. In order to understand the meaning
of this theorem, consider Figure 1.1. The source produces binary digits, or
binits, at some �xed time rate Rt. The encoder is a device that performs data

Source R
binits per
second

-

Encoder
operates on �
binits at a time

-
Noisy

Channel
-

Decoder pro-
duces replica of
source binits

Figure 1.1: Block diagram of a communication system.

processing, modulation, and anything else that might be necessary to prepare
the data for transmission over the channel. We shall assume, however, that
the encoder separates the source sequence into blocks of � binits and operates
on only one block at a time. The encoder output is then transmitted over the
channel and changed by some sort of random disturbance or noise. The decoder
processes the channel output and produces a delayed replica of the source binits.
The coding theorem states that for a large variety of channel models, encoders
and decoders exist such that the probability of the decoder reproducing a source
binit in error Pe is bounded by

e��[EL(Rt)+0(�)] � Pe � e��E(Rt)

The functions E(Rt) and EL(Rt) depend upon the channel but not upon �; they
are positive when Rt = 0, and decrease with Rt until they become 0 at some
time rate Ct known as the channel capacity. The exact nature of these functions
and the particular class of channels for which this theorem has been proved need
not concern us here. The important result is that the coding constraint length
� is a fundamental parameter of a communication system. If a channel is to be
used e�ciently, that is with Rt close to Ct, then � must be made correspondingly
large to achieve a satisfactory error probability.

The obvious response of an engineer to such a theorem is: \Splendid, but how
does one build encoders and decoders that behave in this way when � is large?"
It is rather sobering to observe that if an encoder stores a waveform or code
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word for each possible block of � binits, then the storage requirement must be
proportional to 2� , which is obviously impractical when � is large. Fortunately,
Elias [3] and Rei�en [14] have proved that for a wide variety of channel models,
the results of the Noisy Channel Coding theorem can be achieved with little
equipment complexity at the encoder by the use of parity-check coding. This
will be described in more detail later.

Unfortunately, the problem of decoding simply but e�ectively when � is
large appears to be much more di�cult than the problem of encoding. Enough
approaches to this problem have been developed to assure one that the Cod-
ing theorem has engineering importance. On the other hand these approaches
have not been carried far enough for the design of an e�cient, reliable data
communication system to become a matter of routine engineering.

This monograph contains a detailed study of one of the three or four most
promising approaches to simple decoding for long constraint length codes. The
purpose of publishing this work is primarily to show how such a coding and
decoding scheme would work and where it might be useful. Also, naturally,
it is hoped that this will stimulate further research on the subject. Further
mathematical analysis will probably be fruitless, but there are many interesting
modi�cations of the scheme that might be made and much experimental work
that should be done.

In order the prove mathematically some results about low-density parity-
check codes, we shall assume that the codes are to be used on a somewhat
restricted and idealized class of channels. It is obvious that results using such
channel models can be applied only to channels that closely approximate the
model. However, when studying the probability of decoding error, we are in-
terested primarily in the extremely atypical events that cause errors. It is not
easy to �nd models that approximate both these atypical events and typical
events. Consequently the analysis of codes on idealized channels can provide
only limited insight about real channels, and such insight should be used with
caution.

The channel models to be considered here are called symmetric binary-input
channels. By this we mean a time-discrete channel for which the input is a
sequence of the binary digits 0 and 1 and the output is a corresponding sequence
of letters from a discrete or continuous alphabet. The channel is memoryless in
the sense that given the input at a given time, the output at the corresponding
time is statistically independent of all other inputs and outputs. The symmetry
requirement will be de�ned precisely in Chapter 3, but roughly it means that the
outputs can be paired in such a way that the probability of one output given an
input is the same as that of the other output of the pair given the other input.
The binary symmetric channel, abbreviated BSC, is a member of this class of
channels in which there are only two output symbols, one corresponding to each
input. The BSC can be entirely speci�ed by the probability of a crossover from
one input to the other output.

If a symmetric binary-input channel were to be used without coding, a se-
quence of binary digits would be transmitted through the channel and the re-
ceiver would guess the transmitted symbols one at a time from the received
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symbols. If coding were to be used, however, the coder would �rst take se-
quences of binary digits carrying the information from the source and would
map these sequences into longer redundant sequences, called code words, for
transmission over the channel. We de�ne the rate R of such codes to be the
ratio of the length of the information sequence to the length of the code word
sequence. If the code words are of length n, then there are 2nR possible se-
quences from the source that are mapped into n-length code words. Thus only
a fraction 2�n(1�R) of the 2n di�erent n-length sequences can be used as code
words.

At the receiver, the decoder, with its knowledge of which sequences are code
words, can separate the transmitted n-length code word from the channel noise.
Thus the code word is mapped back into the nR information digits. Many
decoding schemes �nd the transmitted code word by �rst making a decision on
each received digit and then using a knowledge of the code words to correct the
errors. This intermediate decision, however, destroys a considerable amount of
information about the transmitted message, as discussed in detail for several
channels in Reference [1]. The decoding scheme to be described here avoids this
intermediate decision and operates directly with the a posteriori probabilities
of the input symbols conditional on the corresponding received symbols.

The codes to be discussed here are special examples of parity-check codes1.
The code words of a parity-check code are formed by combining a block of
binary-information digits with a block of check digits. Each check digit is the
modulo 2 sum2 of a pre-speci�ed set of information digits. These formation rules
for the check digits can be represented conveniently by a parity-check matrix,
as in Figure 1.2. This matrix represents a set of linear homogeneous modulo 2
equations called parity-check equations, and the set of code words is the set of
solutions of these equations. We call the set of digits contained in a parity-check
equation a parity-check set. For example, the �rst parity-check set in Figure 1.2
is the set of digits (1; 2; 3; 5).

x1 x2 x3 x4 x5 x6 x7

1 1 1 0 1 0 0 x5 = x1 + x2 + x3
n(1�R) 1 1 0 1 0 1 0 x6 = x1 + x2 + x4

1 0 1 1 0 0 1 x7 = x1 + x3 + x4

Figure 1.2: Example of a parity-check matrix.

The use of-parity check codes makes coding (as distinguished from decoding)
relatively simple to implement. Also, as Elias [3] has shown, if a typical parity-
check code of long block length is used on a BSC, and if the code rate is between
critical rate and channel capacity, then the probability of decoding error will be
almost as small as that for the best possible code of that rate and block length.

1For a more detailed discussion of parity-check codes, see Peterson [12].
2The modulo 2 sum is 1 if the ordinary sum is odd and 0 if the ordinary sum is even.
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Unfortunately, the decoding of parity-check codes is not inherently simple
to implement; thus we must look for special classes of parity-check codes, such
as described in Section 1.2, for which reasonable decoding procedures exist.

1.2 Low-Density Parity-Check Codes

Low-density parity-check codes are codes speci�ed by a matrix containing mostly
0's and relatively few 1's. In particular, an (n; j; k) low-density code is a code of
block length n with a matrix like that of Figure 2.1, where each column contains
a small �xed number j of 1's and each row contains a small �xed number k of
1's. Note that this type of matrix does not have the check digits appearing
in diagonal form as do those in Figure 1.2. However, for coding purposes, the
equations represented by these matrices can always be solved to give the check
digits as explicit sums of information digits.

Low density codes are not optimum in the somewhat arti�cial sense of min-
imizing the probability of decoding error for a given block length, and it can
be shown that the maximum rate at which they can be used is bounded below
channel capacity. However, the existence of a simple decoding scheme more
than compensates for these disadvantages.

1.3 Summary of Results

An ensemble of (n; j; k) codes will be formed in Chapter 2, and this ensemble
will be used to analyze the distance properties of (n; j; k) codes. The distance
between two words in a code is simply the number of digits in which they di�er.
Clearly an important parameter in a code is the set of distances separating one
code word from all the other code words. In a parity-check code, it can be shown
that all code words have the same set of distances to the other code words [12].
Thus the distance properties for the ensemble can be summarized by the typical
number of code words at each distance from the all-zero code word. It is found
that the typical (n; j; k) code for j � 3 has a minimum distance that increases
linearly with the block length for j and k constant. Figure 2.4 plots the ratio
of minimum distance to block length for several values of j and k and compares
the ratio with the same ratio for ordinary parity-check codes. The (n; j; k)
codes with j = 2 exhibit markedly di�erent behavior, and it is shown that the
minimum distance of an (n; 2; k) code can increase at most logarithmically with
the block length.

In Chapter 3, a general upper bound on the probability of decoding error for
symmetric binary-input channels with maximum-likelihood decoding is derived
for both individual codes and for arbitrary ensembles of codes. The bound is
a function of the code only through its distance properties. The assumption of
maximum-likelihood decoding is made partly for analytic convenience and partly
so as to be able to evaluate codes independently of their decoding algorithms.
Any practical decoding algorithm, such as that described in Chapter 4, involves
a trade-o� between error probability and simplicity; the maximum-likelihood
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decoder minimizes the error probability but is totally impractical if the block
length is large.

It is shown in Chapter 3 that if the distance properties of the code are
exponentially related to the block length, and if the code rate is su�ciently low,
then the bound to P (e) is an exponentially decreasing function of the block
length. For the appropriate ensemble of codes, these bounds reduce to the
usual random coding bounds [3, 4].

For the special case of the binary symmetric channel, a particularly simple
bound to P (e) is found; this is used to show that over a range of channel
crossover probabilities, a typical low-density code has the same error behavior
as the optimum code of a slightly higher rate. Figure 3.5 illustrates this loss of
e�ective rate associated with low-density codes.

In Chapter 4, two decoding schemes are described. In the �rst, which is par-
ticularly simple, the decoder �rst makes a decision on each digit, then computes
the parity checks and changes any digit that is contained in more than some
�xed number of unsatis�ed parity-check equations. The process is repeated,
each time using the changed digits, until the sequence is decoded. The second
decoding scheme is based on a procedure for computing the conditional proba-
bility that an input symbol is 1; this is conditioned on all the received symbols
that are in any of the parity-check sets containing the digit in question. Once
again, the procedure is iterated until the sequence is decoded. The computation
per digit per iteration in each scheme is independent of the code length. The
probabilistic, or second scheme, entails slightly more computation than the �rst
scheme, but decodes with a lower error probability.

A mathematical analysis of the probability of decoding error using proba-
bilistic decoding is di�cult because of statistical dependencies. However, for a
BSC with su�ciently small cross-over probabilities and for codes with j � 4,
a very weak upper bound the probability of error is derived that decreases
exponentially with a root of the code length. Figure 3.5 plots cross-over proba-
bilities for which the probability of decoding error is guaranteed to approach 0
with increasing code length. It is hypothesized that the probability of decoding
error actually decreases exponentially with block length, while the number of
iterations necessary to decode increases logarithmically.

Chapter 5 extends all the major results of Chapters 2, 3, and 4 to non-
binary low-density parity-check codes. Although the theory generalizes in a
very natural way, the expressions for minimum distance, error probability, and
probabilistic decoding performance error are su�ciently complicated that little
insight is gained into the advantages or disadvantages of a multilevel system over
a binary system. Some experimental work would be helpful here in evaluating
these codes.

Some experimental results for binary low-density codes are presented in
Chapter 6. An IBM 7090 computer was used to simulate both probabilistic
decoding and the noise generated by several di�erent types of channels. Due
to limitation on computer time, the only situations investigated were those in
which the channel was su�ciently noisy to yield a probability of decoding er-
ror greater than 10�4. The most spectacular data from these experiments are
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given in Figure 6.8, which emphasizes the advantages of a decoding scheme that
operates from a likelihood receiver instead of a decision receiver.

1.4 Comparison with Other Schemes

Some other coding and decoding schemes that appear extremely promising for
achieving low error probabilities and high data rates at reasonable cost are the
following: �rst, convolutional codes [3] with sequential decoding as developed
by Wozencraft [17], Fano [5], and Rei�en [14]; second, convolutional codes with
Massey's threshold decoding [10]; and third, the Bose-Chaudhuri codes [2] with
the decoding schemes developed by Peterson [12] and Zierler and Gorenstein [18].

It has been shown by Fano [5] that for arbitrary discrete memoryless chan-
nels, sequential decoding has a probability of decoding error that is upper
bounded by a function of the form e��n. Here n is the constraint length of
the code and � is a function of both the channel and the code; � is positive for
rates below channel capacity C. Fano also shows that for rates below a certain
quantity called Rcomp, where Rcomp < C, the average amount of computation
in decoding a digit is bounded by a quantity independent of constraint length.

An experimental sequential decoder has been built at Lincoln Laboratories,
Lexington, Massachusetts [11]. By using this decoder in a system with a feed-
back link and an appropriately designed modulator and demodulator, reliable
transmission has been achieved experimentally [9] over a telephone circuit at
about 7500 bits per second rather than the 1200 or 2400 bits per second possi-
ble without coding.

The two principal weaknesses of sequential decoding are as follows: First,
the amount of computation required per digit is a random variable, and this
creates a waiting line problem at the decoder; second, if the decoder once makes
an error, a large block of errors can be made before the decoder gets back on
the proper track. If a feedback link is available, these problems are not serious,
but considerably more study is required for cases in which no feedback exists.

Threshold decoding is the simplest scheme to implement that is discussed
here; it involves only shift registers, a few binary adders, and a threshold device.
It is most e�ective at relatively short constraint lengths, and has a somewhat
higher error probability and less exibility than sequential decoding.

The computation per digit associated with the Bose-Chaudhuri codes on the
BSC increases roughly as the cube of the block length but does not uctuate
widely. The decoding scheme guarantees correction of all combinations of up to
some �xed number of errors and corrects nothing beyond. For moderately long
block lengths, this restriction in the decoding procedure causes a large increase
in Pe. No way is known to make use of the a posteriori probabilities at the
output of more general binary input channels. This inability to make use of a
posteriori probabilities appears to be a characteristic limitation of algebraic as
opposed to probabilistic decoding techniques.

The computation per digit associated with low-density parity-check codes
appears to increase at most logarithmically with block length and not to uctu-
ate widely with the noise. The probability of decoding error is unknown, but is
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believed to decrease exponentially with block length at a reasonable rate. The
ability to decode the digits of a block in parallel makes it possible to handle
higher data rates than is possible with other schemes.

For many channels with memory, retaining the a posteriori probabilities from
the channel makes it practically unnecessary to take account of the memory in
any other way. For instance, on a fading channel when the fade persists for
several baud lengths, the a posteriori probabilities will indicate the presence of
a fade. If this channel were used as a BSC however, it would be necessary for
the decoder to account for the fact that bursts of errors are more probable than
isolated errors. Then, using a posteriori probabilities gives low-density decoding
and sequential decoding a great exibility in handling channels with dependent
noise. For channels in which the noise is rigidly constrained to occur in short,
severe bursts, on the other hand, there is a particularly simple procedure for
decoding the Bose-Chaudhuri codes [12].

When transmitting over channels subject to long fades or long noise bursts,
it is often impractical to correct errors in these noisy periods. In such cases it is
advantageous to use a combination of error correction and error detection with
feedback and retransmission [16]. All of the coding and decoding schemes being
considered here �t naturally into such a system, but in cases where little or no
error correction is attempted, low-density codes appear at a disadvantage.

In conclusion, all these schemes have their own advantages, and clearly no
scheme is optimum for all communication situations. It appears that enough
coding and decoding alternatives now exist for serious consideration of the use
of coding on particular channels.
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2 Distance Functions

The distance function of a parity check-code N(`) is de�ned as the number of
code words in the code of weight `. From the group properties of a parity-
check code, it easily follows [12] that N(`) is also the number of code words
at distance ` from any given code word. The minimum distance D of a code
is then de�ned as the smallest value of ` > 0 for which N(`) 6= 0. Clearly, in
a code of given block length n and rate R it is desirable to make D as large
as possible and to make N(`) as small as possible for those ` just larger than
D. However, the next chapter, which discusses bounding the probability of
decoding error for symmetric binary-input channels, will make the exact e�ect
of N(`) on error-correcting capability clearer.

For a parity-check code of long block length it is usually impractical to
calculate exactly the distance function or even the minimum distance because
of the enormous number of code words involved. It is often simpler to analyze the
average distance function of an ensemble of codes; the statistics of an ensemble
permit one to average over quantities that are not tractable in individual codes.
From the ensemble average, one can then make statistical statements about the
member codes.

2.1 Equiprobable Ensemble of Parity-Check Codes

This chapter will be concerned primarily with the distance functions of low-
density parity-check codes, but for comparison purposes, the average distance
function of another ensemble of parity-check codes will be derived �rst. Since a
parity-check code is completely speci�ed by a parity check matrix, an ensemble
of parity-check codes may be de�ned in terms of an ensemble of parity-check
matrices. The equiprobable ensemble of parity-check codes of rate R and block
length n will be de�ned as the ensemble in which the n(1�R) by n parity-check
matrix is �lled with statistically independent equiprobable binary digits. This
is essentially the same ensemble as that considered by Elias [3] in his random
coding bounds for parity-check codes; the minor di�erence is that codes in this
ensemble may have a rate slightly higher than R, since the rows of a matrix in
this ensemble are not necessarily independent over the modulo 2 �eld.

Theorem 2.1. Let N(`) be the average number of code words of weight ` in a

code averaged over the equiprobable ensemble of parity-check codes of length n
and rate R. Then for ` > 0,

N(`)

�
n

`

�
2�n(1�R) � �2�n�(1� �)

�� 1
2 expn

�
H(�)� (1�R) ln 2

�
(2.1)

where

� =
`

n

H(�) = � ln
1

�
+ (1� �) ln

1

1� �
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Proof. Let P (`) be the probability of the set of codes for which some particular
sequence of weight ` is a code word. Stated di�erently, P (`) is the probability
that a particular sequence of weight ` will be a code word in a code chosen at
random from the ensemble. Since the all-zero code word is a code word in any
parity-check code, P (`) = 1 for ` = 0. For ` 6= 0, a particular parity-check will
check with probability 1

2 on the last position in which the ` weight sequence has
a one. This makes the probability 1

2 that a parity-check is satis�ed regardless
whether the �rst `� 1 ones were checked an even or an odd number of times. A
sequence will be a code if and only if it satis�es all the n(1�R) parity checks,
so that

P (`) = 2�n(1�R); for ` 6= 0

The probability P (`) can also be interpreted as an expectation of a random
variable that is 1 if the sequence is a code word and 0 otherwise. Now we observe
that there are

�
n
`

�
sequences of weight ` and that the expected number of code

words among these sequences is the sum of the expectations that the individual
sequences are code words. Thus

N(`) =

�
n

`

�
2�n(1�R) (2.2)

We now bound
�
n
`

�
by the Stirling approximation:

1p
2�n

nn exp
�
�n+ 1

12n
� 1

360n3

�
�
�
n

`

�
� 1p

2�n
nn exp

�
�n+ 1

12n

�
(2.3)

It follows after some manipulation that for �n = `

1p
2�n�(1� �)

exp
�
nH(�)� 1

12n�(1� �)

�
<

�
n

n�

�
<

1p
2�n�(1� �)

expnH(�)

(2.4)

where
H(�) = �� ln�� (1� �) ln(1� �)

Combining Equations (2.4) and (2.2), we get the statement of the theorem.

Next we observe that over the equiprobable ensemble of parity-check codes,
the minimum distance of the individual codes is a random variable whose dis-
tribution function can be bounded by the following theorem.

Theorem 2.2. Over the equiprobable ensemble of parity-check codes of length n
and rate R, the minimum-distance distribution function Pr(D � �n) is bounded
by both the following inequalities for � < 1

2 and �n and integer:

Pr(D � �n) � 1

1� 2�

r
1� �

2�n�
expn

�
H(�)� (1�R) ln 2

�
Pr(D � �n) � 1

(2.5)
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Proof. It was shown in Theorem 2.1 that the probability that a nonzero sequence
is a code word over the ensemble of codes is 2�n(1�R). The probability that any
sequence of weight n� or less is a code word is certainly less than the sum of
the probabilities that the individual sequences are code words. Thus,

Pr(D � n�) �
n�X
`=1

�
n

`

�
2�n(1�R) (2.6)

n�X
`=1

�
n

`

�
=

�
n

n�

�h
1 +

n�

n� n� + 1
+

n�(n� � 1)

(n� n� + 1)(n� n� + 2)
+ � � �

i

Bounding this by a geometric series, we get

n�X
`=1

�
n

`

�
�
�
n

n�

�
1� �

1� 2�
(2.7)

Bounding Equation (2.7) by (2.4) and substituting into Equation (2.6), we get
the statement of the theorem.

As n gets larger, this bound to Pr(D � �n) as a function of � approaches
a step function with the step at that �0 < 1

2 for which H(�0) = (1 � R) ln 2.
Figure 2.4 plots �0 as a function of rate. This result is closely related to the
Gilbert bound on minimum distance [6]. The asymptotic form of the Gilbert
bound for large n states that there exists a code for whichD � n�0. Theorem 2.2
states that for any � > 0, the probability of the set of parity-check codes for
which D < n(�0 � �) approaches 0 exponentially with n.

2.2 Distance Properties of Low-Density Codes

In this section an ensemble of low-density parity-check codes will be de�ned, and
theorems similar to Theorems 2.1 and 2.2 will be proved. Then a new ensemble
will be formed by expurgating those codes that have small minimum distances.
This expurgated ensemble will be used in the next chapter to derive bounds on
the probability of decoding error for various channels.

De�ne an (n; j; k) parity-check matrix as a matrix of n columns that has j
ones in each column, k ones in each row, and zeros elsewhere. It follows from
this de�nition that an (n; j; k) parity-check matrix has nj=k rows and thus a rate
R � 1 � j=k. In order to construct an ensemble of (n; j; k) matrices, consider
�rst the special (n; j; k) matrix in Figure 2.1, for which n = 20, j = 3, and
k = 4.

This matrix is divided into j submatrices, each containing a single 1 in
each column. The �rst of these submatrices contains all its 1's in descending
order; that is, the ith row contains 1's in columns (i � 1)k + 1 to ik. The
other submatrices are merely column permutations of the �rst. We de�ne the
ensemble of (n; j; k) codes as the ensemble resulting from random permutations
of the columns of each of the bottom j � 1 submatrices of a matrix such as in
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1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0
0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

Figure 2.1: Example of a low-density code matrix for n = 20, j = 3, and k = 4.

Figure 2.1 with equal probability assigned to each permutation. This de�nition
is somewhat arbitrary and is made for mathematical convenience. In fact such
an ensemble does not include all (n; j; k) codes as just de�ned. Also, at least
(j� 1) rows in each matrix of the ensemble are linearly dependent. This simply
means that the codes have a slightly higher information rate than the matrix
indicates.

Before �nding the average distance function and the minimum-distance dis-
tribution function for these ensembles of codes, we need the following theorem.

Theorem 2.3. For each code in an (n; j; k) ensemble, the number N1(`) of

sequences of weight ` that satis�es any one of j blocks of n=k parity-checks is

bounded by

N1

hn
k
�0(s)

i
� exp

n

k

�
�(s)� s�0(s) + (k � 1) ln 2

�
(2.8)

where s is an arbitrary parameter, �(s) is de�ned by

�(s) = ln 2�k
h
(1 + es)k + (1� es)k

i
(2.9)

and

�0(s) =
d�(s)

ds

Discussion. This theorem relates ` and N1(`) by expression both as functions
of the parameter s. Figure 2.2 sketches `=n and [lnN1(`)]=n as functions of s.

Proof. For any code in the ensemble, and for any one of the j blocks of n=k
parity checks, the n=k parity-check sets within a block are mutually exclusive
and exhaust all the digits. Consider the set of all sequences of k binits that
contain an even number of ones, and construct an ensemble from these sequences

14



1

s

lnN1(`)
n

`
n

Figure 2.2: The functions `=n and [lnN1(`)]=n as parametric functions of s.

by assigning the same probability to each. The total number of sequences in
the ensemble is 2k�1, and the probability of a sequence containing i ones (i
even) is

�
k
i

�
2�k+1. The moment-generating function for the number of ones in

a sequence is thus

g(s) =
X
i even

�
k

i

�
2�k+1esi (2.10)

or

g(s) = 2�k
�
(1 + es)k + (1� es)k

�
(2.11)

To show that Equations (2.10) and (2.11) are equivalent, use the binomial ex-
pansion on Equation (2.11) and observe that odd terms cancel.

For each of the n=k parity-check sets, independently choose a sequence from
the previous ensemble and use that sequence as the binits in that parity-check
set. This procedure de�nes an ensemble of equiprobable events in which the
events are the n-length sequences satisfying the n=k parity checks. The number
of ones in an n-length sequence is the sum of the number of ones in the individual
parity-check sets, and thus the sum of n=k independent random variables each
having the moment-generating function g(s) in Equation (2.11). Consequently,
the moment generating function for the number of ones in an n-length sequence
is [g(s)]n=k. This is now used to bound the probability Q(`) in this ensemble
that a sequence has ` ones. By de�nition,

[g(s)]
n
k =

nX
`=0

exp(s`)Q(`) (2.12)

� exp(s`)Q(`); for any s and ` (2.13)

From Equation (2.9) and Equation (2.11), �(s) = ln g(s), so that

Q(`) � exp
hn
k
�(s)� s`

i
Finally, N1(`) equals Q(`) times the number of sequences in the ensemble. Since
there are 2k�1 sequences in the k-length ensemble, there are 2n(k�1)=k sequences
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in the n-length ensemble, so that

N1(`) � exp
hn
k
�(s) +

n

k
(k � 1) ln 2� s`

i
(2.14)

When we set the derivative of the exponent in Equation (2.14) equal to 0, we
get ` = (n=k)�0(s), and when we substitute this value of ` in Equation (2.14),
Equation (2.8) results, thereby proving the theorem.

It is shown in Reference [4] that setting ` = (n=k)�0(s) actually minimizes
the exponent, thereby yielding the best bound; however, the theorem is true
regardless of the minimal character of the exponent. Although it is not necessary
in the proof, it can be shown, using \tilted" probabilities [4] and a central limit
theorem [7], that asymptotically for large n,

N1

hn
k
�0(s)

i
! 2p

2�n�0(s)
exp

n

k

�
�(s)� s�0(s) + (k � 1) ln 2

�
(2.15)

Theorem 2.3 can now be used to �nd the probability P (`) of the set of
codes for which some particular sequence of weight ` is a code word. Since
all permutations of a code are equally likely, P (`) is clearly independent of
the particular `-weight sequence chosen. If we choose an `-weight sequence at
random, then for any code in the ensemble the probability is N1(`)=

�
n
`

�
that the

`-weight sequence chosen will satisfy any particular block of n=k parity checks.
Since each of the j blocks of parity checks is chosen independently,

P (`) =

"
N1(`)�

n
`

�
#j

(2.16)

The distance properties and the minimum-distance distribution function can
now be derived in terms of P (`) in the same way as they were derived for the
ensemble of all parity-check codes in Equations (2.1) and (2.5).

Njk(`) �
�
n

`

�
P (`) =

�
n

`

��j+1
N1(`)

j (2.17)

Pr(D � n�) �
n�X
`=2

�
n

`

�
P (`) =

nX
`=2

�
n

`

��j+1
N1(`)

j (2.18)

Note that in the low-density ensemble only sequences of even weight may be
code words. Using Equations (2.4) and (2.14), we get

Njk(`) � C(�; n) exp�nBjk(�); where � =
`

n
(2.19)

Bjk(�) = (j � 1)H(�)� j

k

�
�(s) + (k � 1) ln 2

�
+ js� (2.20)

C(�; n) =
�
2�n�(1� �)

� j�1
2 exp

j � 1

12n�(1� �)
; where � =

�0(s)

k
(2.21)
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Substituting Equation (2.19) into Equation (2.18), we get

Pr(D � n�) �
n�X
`=2

C(�; n) exp�nBjk(�) (2.22)

For n large, the summations in Equations (2.19) and (2.22) are governed prin-
cipally by the behavior of Bjk(�); Bjk(�) also appears in the bounds for prob-
ability of decoding error in the next chapter. Unfortunately, it is not easy to
analyze Bjk(�) since it is given in terms of s, which is in turn an implicit func-
tion of �. It is shown in Appendix A that for j � 3, Bjk(�) has the behavior
shown in Figure 2.3. It is 0 at � = 0; rises with an initial in�nite slope; has a
maximum; and then decreases, crossing the axis at some � = �jk , and remains
negative for � > �jk .

�

Bjk(�)

�jk

Figure 2.3: Sketch of the function Bjk(�).

It is clear that for any � > �jk the summation in Equation (2.22) becomes
unbounded, but the minimum-distance distribution function is still bounded by
1. For � < �jk , the biggest terms in the summation are for � close to 0 and �
close to �jk . The following theorem, which is proved in Appendix A, states this
precisely.

Theorem 2.4. For an (n; j; k) ensemble of codes, the minimum-distance dis-

tribution function is bounded by both

Pr(D � n�) � k � 1

2nj�2
+ 0

� 1

nj�2

�
+ nC(n�; n) exp�nBjk(�) (2.23)

and

Pr(D � n�) � 1

where C and B are de�ned in Equations (2.20) and (2.21) and 0(1=nj�2) is a

function approaching zero with n faster than 1=nj�2.

The �rst term in Equation (2.23) comes from code words of weight 2; the
next term comes from words of small weights greater than 2; and the last term
comes from words of large weight. As n gets larger, this bound to the minimum-
distance distribution function tends toward small step at � = 2=n, and a large
step at � = �jk, with the amplitude of the small step decreasing as n�j+2.
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The expression �jk will be called the typical minimum-distance ratio of an
(n; j; k) ensemble. For large n, most codes in the ensemble have a minimum
distance either close to or greater than n�jk ; since �jk is independent of block
length, the minimum distance typical of most codes in the ensemble increases
linearly with the block length. Figure 2.4 plots �jk as a function of rate for
several values of j and k and compares them with the typical minimum distance
ratio of the equiprobable ensemble of codes. It can be seen that as j and k
increases, �jk for the (n; j; k) codes quickly approaches �0 for the equiprobable
ensemble of codes. This is proved in Theorem A.3 of Appendix A.

�jk = Minimum distance ratio

�0, Equiprobable ensemble
of parity-check codes3; 6

3; 5

3; 4

4; 6

4; 5
5; 6

Rate

0 0:1 0:2 0:3 0:4 0:5

0:2

0:4

0:6

0:8

1:0

Figure 2.4: Ratio of minimum distance to block length for typical long (n; j; k)
codes.

Here we see why a minimum-distance distribution function was derived be-
fore any results were obtained about probability of decoding error. If two words
in a group code di�er only in two digits, then the probability of a decoding error
is lower bounded by the probability of receiving those two digits incorrectly; this
is independent of code length. Thus, over the whole ensemble, the probability
of decoding error as n!1 is proportional to 1=nj�2, the probability of codes
of minimum distance 2. Thus a very small number of poor codes dominates the
probability of decoding error over the ensemble.

In order to determine the probability of error behavior of typical (n; j; k)
codes with minimum distances in the order of n�jk, we shall modify the (n; j; k)
ensemble. Remove the half of the codes with smallest minimum distances from
an (n; j; k) ensemble and double the probability of each code in the remaining
half. The resulting ensemble will be called an expurgated (n; j; k) ensemble and
will be used in Chapter 3 to derive bounds on the probability of decoding error
for (n; j; k) codes.

Let �njk be the minimum distance of the expurgated ensemble. Then �njk is
lower bounded by that value of � for which the right hand side of Equation (2.23)
is one-half. With increasing n, the bound of Equation (2.23) approaches a
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step function at �jk, so that �njk is asymptotically bounded by �jk . For the
expurgated low-density ensemble, we now have

Njk(`)

� � 2C(�; n) exp�nBjk(�); � � �njk
= 0; � < �njk

�
(2.24)

Similarly, we can expurgate the random ensemble of parity-check codes to
get, from Equations (2.1) and (2.5)

N(`)

(
� 2

�
2��(1� �)

�� 1
2 expn

�
H(�)� (1�R) ln 2

�
; � � �0

= 0; � � �0

)
(2.25)

where �0 satis�es H(�0) = (1�R) ln 2, and n is large enough so that

1

1� 2�0

r
1� �0
2�n�0

� 1
2

Before using this modi�ed (n; j; k) ensemble to derive bounds to the prob-
ability of decoding error, we shall consider the special case of j = 2, which
corresponds to ensembles in which each digit is contained in exactly two parity-
check sets.

Theorem 2.5. Let a parity-check code have block length n with each digit con-

tained in exactly two parity-check sets, at let each parity-check set contain k
digits. Then the minimum distance D of this code must be bounded by

D � 2 +
2 ln n

2

ln(k � 1)
(2.26)

Proof. The theorem will be proved by representing the code in the form of a
tree as in Figure 2.5. Let the �rst digit in the code be represented by the node
at the base of the tree. This digit is contained in two parity-check sets, which
are denoted by the two branches rising from the base node. The other digits
in these two parity-check sets are represented by the nodes in the �rst tier of
the tree. In like manner, each digit in the �rst tier is contained in another
parity-check set depicted by a branch rising from that digit.

Successive tiers in the base may be similarly constructed until, for some
integer m a loop is formed by the branches rising from the mth tier. Such a
loop may occur either if two parity-check sets rising from the mth tier contain
a digit on tier m+1, as in Figure 2.5, or if a single parity-check set rising from
the mth tier contains more than one digit in the mth tier.

We next bound m in terms of the block length n. The �rst of the tree
contains 2(k � 1) nodes; the second contains 2(k � 1)2 nodes; and similarly
the mth tier contains 2(k � 1)m nodes, since by assumption no loop occurs in
branches below the mth tier. Since each node corresponds to a distinct digit,

2(k � 1)m � n

m � ln n
2

ln(k � 1)
(2.27)
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Tier 1

Tier 2

Tier 3

�

�

�

�

�

�

�

�

Figure 2.5: Parity-check tree

For a given loop in the tree, consider the set of nodes that comprise the
intersections of the branches in the loop. Such a set of nodes is represented
by asterisks in Figure 2.5. Each branch in the loop must contain exactly two
of these nodes, and no other branch in the tree contains any of these nodes.
Consequently, an n-length sequence that contains ones in positions correspond-
ing to the nodes of this set and zeros elsewhere must be a code word, since all
parity-check sets contain an even number of ones. Finally, the weight D of the
code word corresponding to the �rst loop that occurs must be bounded by

D � 2m+ 2 (2.28)

since the loop is formed by a single descent and ascent in the tree. Combin-
ing Equations (2.27) and (2.28), we get the statement of the theorem, Equa-
tion (2.26).
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3 Probability of Decoding Error

A technique for upper bounding the probability of decoding error for arbitrary
binary block codes will be developed in this chapter. It will be assumed that
the decoding is maximum likelihood and that the channel has a binary-input
alphabet, an arbitrary output alphabet, and is symmetrical in a sense to be
de�ned later.

The reason for developing this technique is threefold: First, it is needed
to demonstrate the capabilities of low-density codes; second, it provides a tool
both for comparing codes and for gaining insight into the relation between a
code's distance properties and its probability of decoding error; third, it yields
a conceptually simpler, although analytically more complicated, technique for
analyzing random ensembles of codes. The conceptual simpli�cation here lies
in a separation of the analysis of the channel from the analysis of the ensemble
of codes (which is used to derive the distance properties of the ensemble).

3.1 Symmetric Binary Input Channels

A symmetric binary-input channel is de�ned as a time-discrete channel with the
following properties:

1. The input alphabet X consists of two letters, denoted by 0 and 1.

2. The output alphabet Y can be represented either as a discrete or a continuous
set of real numbers.

3. The output y at a given discrete time is statistically dependent only on the
current input x.

4. The symmetry condition given by Equation (3.1) holds for all outputs y.

P0(y) = P1(�y) (3.1)

In this equation and throughout this chapter, Px(y) is a conditional proba-
bility density if Y is a continuous set, and is a conditional probability if Y is a
discrete set.

Some examples of such channels are given in Figure 3.1. The lack of sym-
metry between the labeling of input and output is regrettable, but a change
in output labeling would greatly complicate the symmetry condition, Equa-
tion (3.1), and a change in input labeling would make parity-check codes seem
less familiar to symbol-oriented readers.

3.2 Distance Properties

Assume that in a particular code of block length n, an arbitrary code word u0
is transmitted, and assume that the number of other code words N(`) at each
distance ` from u0 is known. In the following section, the probability of error
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(a) (b)

0

1

P0(y)

P1(y)

y 0

1

P0(y)

P1(y)

y

(c) (d)

a. Binary symmetric channel.

b. Binary symmetric threshold channel.

c. Additive white Gaussian noise channel; log-likelihood output (see Sec-
tion 6.3).

P0(y) =
1p
2��

exp�
�
y � �2=2

�2
2�2

P1(y) =
1p
2��

exp�
�
y + �2=2

�2
2�2

�2 =
4Ec(1� �)

N0

d. Rayleigh fading channel; log-likelihood output (see Section 6.4).

P0(y) =
1 +A

A(2 +A)
exp� y

A
; y � 0

=
1 +A

A(2 +A)
exp

y(1 +A)

A
; y < 0

P1(y) = P0(�y)
A =

Ec

N0

Figure 3.1: Symmetric binary-input channels.
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using maximum-likelihood decoding will be upper bounded in terms of N(`)
when u0 is transmitted over a symmetric binary-input channel. This bound will
then easily be extended to apply to an entire code or to an ensemble of codes.

3.3 Upper Bound on Probability of Decoding Error

Let u0 = x10; x20; : : : ; xn0 be the transmitted code word, and let v = y1; y2; : : : ;
yn be the received sequence. Let the other code words be numbered u1; : : : ; uj ;
: : : ; uM�1 where uj = x1j ; : : : ; xnj . Using maximum likelihood decoding, a
decoding error will be made if P (vjuj) > P (vju0) for any j, 1 � j � M � 1.
Also, a decoding error might be made if P (vjuj) = P (vju0), and in upper
bounding the probability of decoding error, we can assume that such errors are
always made. Using the assumption of statistical independence between the n
uses of the channel, this condition for decoding errors becomes

nY
i=1

Pxij (yi) �
nY
i=1

Pxi0(yi); for some j, 1 � j �M � 1 (3.2)

Thus, the probability of decoding error is upper bounded by the probability
that Equation (3.2) is satis�ed. Equation (3.2) becomes easier to work with if
we take the logarithm of both sides, yielding the following inequality between
sums of random variables:

nX
i=1

lnPxij (yi) �
nX
i=1

lnPxi0(yi) (3.3)

Finally, for reasons to be discussed later, we subtract an arbitrary function of
the output sequence,

Pn
i=1 f(yi) from both sides of Equation (3.3) and multiply

by �1, yielding the following condition for decoding errors:

nX
i=1

ln
f(yi)

Pxij (yi)
�

nX
i=1

ln
f(yi)

Pxi0(yi)
(3.4)

for some j, 1 � j � M � 1. We place the following restriction on f(y): f(y) is
positive if either P0(y) or P1(y) is positive, and

f(y) = f(�y); for all y (3.5)

Next we de�ne the discrepancy �(xiyi) between an input xi and an output
yi as

�(xiyi) = ln
f(yi)

Pxi(yi)
(3.6)

Further, de�ne the discrepancy D(uv) between u and v as

D(uv) =

nX
i=1

�(xiyi) (3.7)

23



From Equations (3.4), (3.6), and (3.7), we see that a decoding error is made only
when D(ujv) � D(u0v) for any code word uj other than u0. More formally, the
probability of decoding error Pe is bounded by

Pe � Pr

�M�1[
j=1

�
event that D(ujv) � D(u0v)

��
(3.8)

The most obvious procedure for simplifying Equation (3.8) would be to upper
bound the probability of the union of events by the sum of the probabilities of
the individual events. This does not yield a good upper bound, however; when
D(u0v) is very large, say greater than a suitable constant nd, it is likely to be
larger than many of D(ujv), thereby causing one decoding error to be counted
many times in the bound. To avoid this di�culty, we shall use separate bounding
techniques on those events for which D(u0v) � nd. The parameter d is arbitrary
and will be optimized later. Thus, if we split Equation (3.8), we get

Pe � P1 + P2 (3.9)

where

P1 = Pr

�M�1[
j=1

�
event that D(u0v) > nd; D(ujv) � D(u0v)

��

P2 = Pr

�M�1[
j=1

�
event that D(u0v) � nd; D(ujv) � D(u0v)

��

Now we can bound P1 and P2 separately by

P1 � Pr
�
D(u0v) > nd

�
(3.10)

P2 �
M�1X
j=1

Pr
�
D(u0v) � nd; D(ujv) � D(u0v)

�
(3.11)

Observe that Equation (3.9) is an exact expression for Pe except for the
bounding involved in assuming that ambiguities (that is, cases where D(u0v) =
D(ujv)) always cause errors. Thus the arbitrary function f(y) can have no
e�ect on Equation (3.9) since it has no e�ect on which word is decoded when u0
is transmitted. The function f(y) does have an e�ect on Equations (3.10) and
(3.11), however, since the function helps determine the set of output sequences
for which D(u0v) � nd.

Finally, observe from Equation (3.7) that D(u0v) and D(ujv) are both de-
�ned as sums of random variables, and thus, using Equations (3.10) and (3.11),
the problem of bounding Pe has been reduced to the problem of bounding the
tails of the distributions of sums of random variables. This is best done by the
Chernov bound technique, briey described in Appendix B. For a more detailed
exposition, see Fano [4, Chapter 8].
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3.4 Chernov Bounds

In order to bound P1 in Equation (3.10), we need the following theorem which
is proved in Appendix B.

Theorem 3.1. Let Z =
Pn

i=1 zi be the sum of n independent random vari-

ables, let Pi(zi) be the probability density of the ith variable, and let gi(s) =R1
�1 exp(szi)Pi(zi) dzi be the moment generating function for the ith variable.

Then

Pr(Z � nz0) � exp(�nsz0)
nY
i=1

gi(s) (3.12)

for all s � 0 such that the gi(s) exist. If the zi are discrete, then the same

statement holds except that the Pi(zi) are probabilities and the integral de�ning

gi(s) is replaced by a sum.

To apply this theorem to D(u0v) =
Pn

i=1 �(xi0yi), we consider �(xi0yi) as
a random variable where xi is given and yi is determined according to Pxi(yi).
The moment generating function of � is then

gi(s) =

Z 1

�1
exp

�
s�(xi0yi)

�
Pxi0(yi) dyi (3.13)

Using Equation (3.6), this becomes

gi(s) =

Z 1

�1

�
Pxi0(yi)

�1�s�
f(yi)

�s
dyi (3.14)

For xi0 = 0, Equation (3.14) becomes

gi(s) =

Z 1

�1
P0(y)

1�sf(y)s dy (3.15)

For xi0 = 1, using the symmetry conditions Equations (3.1) and (3.5), Equa-
tion (3.14) becomes

gi(s) =

Z 1

�1
P0(�y)1�sf(�y)s dy (3.16)

Substituting �y for y as the variable of integration, we see that Equations (3.15)
and (3.16) are identical, and thus gi(s) is independent of xi0 and i:

gi(s) = g(s) =

Z 1

�1
P0(y)

1�sf(y)s dy (3.17)

It can be shown that Equation (3.17) is equivalent to the distribution function
of the discrepancy between the channel input and output and is independent of
the input as is reasonable from the channel symmetry.
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Finally, using Theorem 3.1, we get

P1 � Pr
�
D(u0v) � nd

� � g(s)n exp(�nsd) (3.18)

for any s � 0 such that g(s) in Equation (3.17) exists.
To complete our bound on error probability, P2, as given by Equation (3.11)

must be bounded. This requires the following theorem which is proven in Ap-
pendix B.

Theorem 3.2. Let zi and wi, 1 � i � n, be n pairs of random variables with

probability density functions Pi(zi; wi). Let the joint moment generating func-

tion of zi; wi, be

hi(r; t) =

ZZ
exp(rzi + twi)Pi(zi; wi) dzi dwi (3.19)

Let each pair of random variables be statistically independent of each other pair

and de�ne Z and W by

Z =

nX
i=1

zi

W =
X̀
i=1

wi

` � n

(3.20)

Then, for any arbitrary numbers z0 and w0,

P (Z � nz0; W � nw0) �
Ỳ
i=1

�
hi(r; t)

� nY
i=`+1

�
hi(r; 0)

�
exp�n(rz0 + tw0) (3.21)

for any r � 0, t � 0 for which hi(r; t) exists. If z and w are discrete, Equa-

tion (3.21) still holds with integrals in Equation (3.19) replaced by sums, and

the probability density replaced by a probability.

This theorem will be used to bound Pr[D(u0v) � nd; D(ujv)�D(u0v) � 0]
for each code word uj . Assume �rst that uj di�ers from u0 in the �rst ` digits
and is identical to u0 in the last n� ` digits. Then

D(uj ; v)�D(u0; v) =
X̀
i=1

�(xij ; yi)� �(xi0; yi)

From the symmetry conditions, Equations (3.1) and (3.5), and from the de�ni-
tion of � in Equation (3.6), we note that �(xij ; yi) equals �(x0;�yi) for i � `
since we have assumed that xij 6= xi0 for i � `. Now let

zi = �(xi0; yi); wi = �(xi0;�yi)� �(xi0; yi)
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For a given xi, both zi and wi are functions of yi, and we can write hi(r; t)
in Equation (3.19) as

hi(r; t) =

Z 1

�1
exp

�
r�(xi0; yi) + t�(xi0;�yi)� t�(xi0; yi)

�
Pxi0(yi) dyi (3.22)

Writing out hi(r; t) in the same way as gi(s) in Equation (3.13), we see that
hi(r; t) is independent of xi0 and i. Thus

hi(r; t) = h(r; t) =

Z 1

�1
P0(y)

1�r+tP0(�y)�tf(y)r dy (3.23)

Now, applying Theorem 3.2, we get

Pr
�
D(u0v) � nd; D(ujv)�D(u0v) � 0

� � �h(r; t)�`�h(r; 0)�n�`e�nrd (3.24)

for any r � 0, t � 0 if uj and u0 di�er in the �rst ` digits.
Finally, by renumbering the n digits in a block, we see that the bound in

Equation (3.24) applies to each of the N(`) code words that are distance ` from
u0. Thus

P2 �
nX
`=0

N(`)
�
h(r; t)

�`�
h(r; 0)

�n�`
e�nrd (3.25)

for any r � 0, t � 0 where h(r; t) is given in Equation (3.23).
The term in Equation (3.25) for ` = 0 accounts for the pathological possi-

bility that one of the other code words is identical to u0; N(0) is the number of
code words other than u0 that are identical to u0.

Equations (3.25) and (3.18) give bounds for P1 and P2; from Equation (3.9)
their sum bounds the maximum-likelihood probability of decoding error when
a given code word is transmitted. This bound is in terms of the code dis-
tances N(`), the channel transition probabilities P0(y), and a number of stray
parameters that must be optimized; namely, s, r, t, d, and f(y). Thus the com-
binatorial and probabilistic aspects of the problem have been solved, and given
N(`), Equations (3.25) and (3.18) are essentially as simple to evaluate when the
block length is large as when it is small. However, the optimization problem
is by no means trivial since the equations are transcendental and involve con-
straints on s, r, t and f(y). One simpli�cation is to eliminate the parameter t.
Equation (3.25) is minimized with respect to t by minimizing h(r; t), which can
be accomplished by setting @h(r; t)=@t = 0. From Equation (3.23), this gives usZ 1

�1

�
ln

P0(y)

P0(�y)
�
P0(y)

1�r+tP0(�y)�tf(y)r dy = 0 (3.26)

If 1 � r + t = �t, then using the symmetry of f(y) we see that the integrand
of Equation 3.26 is antisymmetrical in y and thus the integral is 0. To ensure
that this is a minimum,

@2h(r; t)

@t2
=

Z 1

�1

�
ln

P0(y)

P0(�y)
�2
P0(y)

1�r+tP0(�y)�tf(y)r dy � 0
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Finally we observe that the solution

t =
r � 1

2
(3.27)

automatically satis�es the constraint

t � 0; for r � 0

With this simpli�cation, Equation 3.25 can be rewritten

P2 �
nX
`=0

N(`)
�
h(r)

�`�
g(r)

�n�`
e�nrd (3.28)

h(r) =

Z 1

�1

�
P0(y)P0(�y)

�(1�r)=2
f(y)r dy (3.29)

g(r) =

Z 1

�1

�
P0(y)

�1�r
f(y)r dy (3.30)

These equations use that fact that h(r; 0) = g(r), as can be seen from Equa-
tions (3.17) and (3.23).

3.5 �Pe for Codes and Ensembles of Codes

Next consider the probability of decoding error for a complete code. Let Nj(`)
be the number of code words at distance ` from the code word uj ; 0 � j �M�1.
Then, from Equations (3.18) and (3.28), the probability of decoding error for
the code assuming equiprobable use of the code words is

�Pe �
M�1X
j=0

1

M

n
g(s)ne�nsd +

nX
`=0

Nj(`)h(r)
`g(r)n�`e�nrd

o
;

for any s � 0, r � 0

(3.31)

Now de�ne

N(`) =
1

M

M�1X
j=0

Nj(`)

as the average over j of the number of code words at distance ` from code word
uj . Equation (3.31) then becomes

�Pe � g(s)ne�nsd +
nX
`=0

N(`)h(r)`g(r)n�`e�nrd;

for any s � 0, r � 0

(3.32)

where

g(s) =

Z 1

�1
P0(y)

1�sf(y)s dy (3.33)

h(r) =

Z 1

�1

�
P0(y)P0(�y)

�(1�r)=2
f(y)r dy (3.34)
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Finally consider an ensemble of codes such as those considered in Chapter 2.
LettingN(`) be the average over the ensemble of codes of theN(`) de�ned in the
�rst paragraph of this section for a particular code, Equation (3.32) again holds,
and �Pe is now the ensemble average probability of decoding error. Note that at
least one code in the ensemble must have a probability of error as small as the
average and that at least a fraction 1� � of the codes must have a probability
of error at most �Pe=�. This last result follows from noting that if more than a
fraction � of the codes had a probability of error greater than �Pe=� then these
codes alone would contribute more than �Pe to the average error probability.

The bound in Equation (3.32) is somewhat di�cult to work with, �rst be-
cause it involves a sum over n terms where n might be large, and second because
there are a number of stray parameters, r, s, d, f(y), over which the bound
should be optimized. Unfortunately, in general, virtually nothing can be done
to simplify this bound without weakening it. Before proceeding, however, some
motivation on the direction to be followed in this simpli�cation and weakening
will be helpful. It will be shown later that Equation (3.32) is approximately
an exponentially decreasing function of the block length n, both for low-density
and equiprobable ensembles of parity-check codes. Thus, to study �Pe for very
long block lengths, and to study the variation of �Pe with block length, the co-
e�cient of n in this exponential function will be of primary importance. Our
aim in what follows will be to �nd values of d, f(y), r, and s to optimize this
exponential coe�cient. Consequently, other parts of the expression for �Pe will
be ignored for purposes of optimization. Having obtained such a bound, it is
of course possible to go back in any particular case and get a tighter result for
Equation (3.32), but to attempt this in general would only confuse and already
complicated situation.

Now assume that the distance functionN(`) for a particular code or ensemble
of codes can be bounded by an expression such as

N(`) � C(�; n)enB(�); � =
`

n
(3.35)

where C(�; n) must be a relatively small quantity for the following approach
to be useful. Equations (2.1) and (2.19) give such bounds for random and
low-density ensembles of parity-check codes. Now let

Cn = max
�

C(�; n) (3.36)

Using Cn for C(�; n) in Equation (3.35), substituting this into Equation (3.32),
rearranging a little, and bounding the summation by n times its maximum term,
we get

�Pe � expn
�
ln g(s)� sd

�
+ nCnmax

�
expn

�
B(�) + � ln h(r) + (1� �) ln g(r) � rd

�
for any s � 0, r � 0 (3.37)

The functions g and h are still given by Equations (3.33) and (3.34). Equa-
tion (3.37) has two terms, each of which are essentially exponential in n. The
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�rst term decreases with d if s > 0, and the second increases with d if r < 0.
Thus if we chose d to make the exponents equal, any change in d would increase
one of the two exponents. Thus this choice of d minimizes the coe�cient of n
in the largest exponent. Eliminating d in this way, we get

�Pe � (1 + nCn) exp
��nmin

�
E(s; r; �)

�
; for s � 0, r � 0 (3.38)

E(s; r; �) =
r

s� r
ln g(s)� s

s� r

�
B(�) + � ln h(r) + (1� �) ln g(r)

�
(3.39)

The result in Equations (3.38) and (3.39) still depends on the function f(y)
through the de�nition of the functions g and h. In Appendix B, it is shown that
E(s; r; �) is maximized over f(y) by

f(y) = k

(h
P0(y)

1�r
2 + P1(y)

1�r
2

i2
+ ���

�(1��)
�
P0(y)

1�r + P1(y)
1�r�

P0(y)1�s + P1(y)1�s

) 1
s�r

where

� =
g(r)

g(r) + h(r)

(3.40)

The constant k in Equation (3.40) is arbitrary and cancels out in the bound for
�Pe. Unfortunately, this is only an implicit solution since � itself is a function
of f(y). For any value of s, r, and �, the f(y) satisfying Equation (3.40) can
be found only by a series of approximations for �. This makes optimizing
Equation (3.39) di�cult even with a computer. As a result, we choose f(y)
more simply to be

f(y) = k

(h
P0(y)

1�r
2 + P1(y)

1�r
2

i2
P0(y)1�s + P1(y)1�s

) 1
s�r

(3.41)

For the equiprobable ensemble of codes, maximizing �Pe over � will later be
shown to yield � = �, and in this case, Equations (3.40) and (3.41) give identical
results. For other ensembles, the small change in f(y) caused by using Equa-
tion (3.41) instead of Equation (3.40) will cause only a second-order change in
the exponent of �Pe.

Writing out the moment-generating functions explicitly in Equation (3.39)
and using Equation (3.41), we get (see Appendix B)

�Pe � (1 + nCn) exp�nE(s; r) (3.42)

E(s; r) =
s

s� r
�(�) � ln

Z 1

0

�
P 1�s
0 + P 1�s

1

�� r
s�r

�
P

1�r
2

0 + P
1�r
2

1

� 2s
s�r

(3.43)

� =

Z 1

0

�
P 1�s
0 + P 1�s

1

�� r
s�r

�
P

1�r
2

0 + P
1�r
2

1

� 2r
s�r

2
�
P0P1

� 1�r
2

Z 1

0

�
P 1�s
0 + P 1�s

1

�� r
s�r

�
P

1�r
2

0 + P
1�r
2

1

� 2s
s�r

(3.44)
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�(�) = min
�

��B(�)� � ln�� (1� �) ln(1� �)
�

(3.45)

Equations (3.42) to (3.45) give a general bound for �Pe in terms of three
parameters: s, r and �. Equation (3.45) can be used to eliminate � for any
given s � 0 and r � 0, but maximizing E(s; r) over s and r is not simple and
may even involve several local maxima. However, this maximization can be
performed with a computer.

3.6 Error Probability for Equiprobable Code Ensemble

As an example of the use of Equations (3.42) to (3.45) consider the special case
of the equiprobable ensemble of parity-check codes, for which from Equation 2.1

B(�) = �(1�R) ln 2� � ln�� (1� �) ln(1� �) (3.46)

where R = (log2M)=n is the code rate.
Substituting Equation (3.46) into Equation (3.45) and minimizing, we see

that the minimum is at � = � and has a constant value independent of �,

�(�) = (1�R) ln 2 (3.47)

This makes Equation (3.43) independent of �, and makes it possible to simplify
Equations (3.42) and (3.43) to (see Appendix B):

�Pe � (1 + nCn)e
�nE(s)

E(s) =
s

1� s
(1�R) ln 2� ln

Z 1

0

�
P0(y)

1�s + P1(y)
1�s�1=(1�s) dy

for any s in the range 0 � s � 1
2

(3.48)

Thus, for any given value of s, E(s) is linearly related to R with a slope of
�s ln 2=(1� s). Figure 3.2 illustrates the relation of E(s) to R with s as a pa-
rameter. The upper envelope of this family of curves gives the desired exponent
of �Pe as a function of R.

A parametric pair of equations for this envelope can be found by setting
the partial derivative of E(s) with respect to s equal to 0. This yields the
relationship

R(s) = 1� (1� s)20(s)

ln 2
; 0 � s � 1

2 (3.49)

E(s) = s(1� s)0(s)� (s) (3.50)

where

(s) = ln

Z 1

0

�
P0(y)

1�s + P1(y)
1�s�1=(1�s) dy (3.51)
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E(s;R) =
s

1� s
(1�R) ln 2� (s)

(s) = ln

Z 1

0

�
P0(y)

1�s + P1(y)
1�s� 1

1�s dy

Figure 3.2: Family of curves relating exponent to rate for equiprobable ensemble
of codes.

It can be shown that: R(s) decreases with s, E(s) increases with s, the slope
of E(s) as a function of R(s) is (�s ln 2)=(1 � s), and lims!0R(s) is equal to
channel capacity. For those values of R less than R( 12 ), the E vs. R curve is
given by Equation (3.48) with s = 1

2

E = (1�R) ln 2� ln

Z 1

0

hp
P0(y) +

p
P1(y)

i2
dy; for R < R( 12 ) (3.52)

The E vs. R curve yielded by Equations (3.49) to (3.52) is the same as that
found by Fano [4] except for some small changes in terminology. These equations
simplify even further in the special case of the binary symmetric channel (See
Figure 3.1). In this case,

(s) =
1

1� s
ln
�
(1� p)1�s + p1�s

�
and after some straightforward manipulation we get the familiar results,

R(s) = 1� H(ps)

ln 2
(3.53)

E(s) = ps ln
1

p
+ (1� ps) ln

1

1� p
�H(ps) (3.54)
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where

ps =
p1�s

p1�s + (1� p)1�s
; 0 � s � 1

2

E = (1�R) ln 2� 2 ln
�p

p+
p
1� p

�
; for R � R( 12 ) (3.55)

We have seen that for this equiprobable ensemble of codes the value of �
that yields the largest contribution to �Pe is equal to �, which is given in Equa-
tion (3.44) and simpli�es for the equiprobable ensemble (see Appendix B) to:

�(s) =

Z 1

0

�
P 1�s
0 + P 1�s

1

�1=(1�s)� 2(P0P1)
1�s�

P 1�s
0 + P 1�s

1

�2
�
dy

Z 1

0

�
P 1�s
0 + P 1�s

1

�1=(1�s)
dy

(3.56)

One curious consequence of this is as follows: Suppose we had a way of
increasing the minimum distance of a typical randomly chosen code. This would
have negligible e�ect on the probability of decoding error for the code on a
particular channel unless the minimum distance could be made larger than
n�(s) since that is the distance at which most of the decoding errors occur.

On the other hand, if the code rate is low enough, the minimum distance
can be made su�ciently large to change the exponent of �Pe. In Chapter 2, it
was shown that the ensemble of random parity-check codes could be expurgated
to include only codes with minimum distance at least n�0 where

H(�0) = (1�R) ln 2

Minimizing �(�) in Equation (3.45) for this expurgated ensemble, we get

�(�) = (1�R) ln 2 = H(�0); � > �0 (3.57)

�(�) = ��0 ln�� (1� �0) ln(1� �); � � �0 (3.58)

Now observe that with this expurgated ensemble we can still use the same
values of s and r for a given rate as we did for the unexpurgated ensemble, and
certainly get a valid exponential bound on �Pe. If we do this, then the exponent
E will be unchanged from the unexpurgated case for rates such that � > �0
and the exponent E will be increased when � � �0. It can be shown that this
exponent is in fact the maximum exponent over s and r. Further, it can be
shown that � = �0 at some R0 satisfying 0 < R0 < R( 12 ) and that � < �0 for
R < R0. For R < R0, substituting Equation (3.58) into Equation (3.43) with
s = 1

2 , r = 0 and simplifying yields

E = ��0 ln
Z 1

0

2
p
P0(y)P1(y) dy (3.59)

where �0 satis�es H(�0) = (1 � R) ln 2. Figure 3.3 shows a sketch of the E{
R curve for this expurgated case. This bound was also independently derived
earlier for the binary symmetric channel by Elias in unpublished work.
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H(�0) = (1� R) ln 2

Figure 3.3: Expurgated and unexpurgated equiprobable ensemble of codes.

3.7 Binary Symmetric Channel

In order to obtain some insight into the behavior of Equations (3.42) to (3.45)
for arbitrary code ensembles and, in particular, low-density code ensembles, we
shall consider the binary symmetric channel (BSC) with transition probability
p as shown in Figure 3.1. For this channel, the integrals in Equations (3.43)
and (3.44) reduce to single terms, and we get

�Pe � (1 + nCn) exp�nE(s; r) (3.60)

E(s; r) =
s

s� r
�(�) +

r

s� r
ln
h
(1� p)1�s + p1�s

i
� 2s

s� r
ln
h
(1� p)

1�r
2 + p

1�r
2

i
(3.61)

� =
2
�
(1� p)p

� 1�r
2

(1� p)
1�r
2 + p

1�r
2

(3.62)

�(�) = min
�

��B(�)� � ln�� (1� �) ln(1� �)
�

(3.63)

In Appendix B it is shown that if E(s; r) has a maximum in the region
0 < s <1; �1 < r < 0, then this maximum is given by

E = max
s;r

E(s; r) = ps ln
1

p
+ (1� ps) ln

1

1� p
�H(ps) (3.64)

where ps is the solution to the following two equations involving the unknowns
ps and pr:

ps =
�0
2

+ (1� �0)pr (3.65)

H(ps) = B(�0) + �0 ln 2 + (1� �0)H(pr) (3.66)
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In Equations (3.65) and (3.66), �0 is the value of � that maximizes

B(�) +
�

2
ln 4pr(1� pr) (3.67)

The values of s and r at which the maximum in Equation(3.64) occurs are given
implicitly by

ps =
p1�s

p1�s + (1� p)1�s

pr =
p1�r

p1�r + (1� p)1�r

(3.68)

The solution of Equations (3.65), (3.66), and (3.67) still involves the si-
multaneous solution of three equations of which two are transcendental. The
advantage of these equations, however, is that they do not involve the channel
transition probability p. Thus, if a solution exists to these equations, it is valid
for all transition probabilities in the range

pr � p � ps (3.69)

From Equation (3.68), this is the range of p over which s � 0 and r � 0. Fig-
ure 3.4 gives a geometrical interpretation of the exponent E in Equation (3.64)
as a function of ps and p. It is interesting to observe, also, that Equation (3.64)
is identical to Equation (3.54), the exponent derived for the equiprobable en-
semble, except, of course, that the value of ps might be di�erent. A lower bound
to �Pe for the best possible code of rate R can also be derived, and it has been
shown [4] that Equations (3.53) and (3.54) also relate the exponent of �Pe and
the rate for the best possible code. Thus it is meaningful to compare codes for

p ps

H(p)

E

Tangent to
H(p)

Figure 3.4: Geometric interpretation of exponent for binary symmetric channel.

the BSC in terms of the parameter ps. Equations (3.65), (3.66), and (3.67) have
been solved for several expurgated ensembles of low-density parity-check codes
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Figure 3.5: Error-correcting properties of (n; j; k) codes on BSC as function of
rate for large n.

for which the function B(�) is bounded in Equation (2.20). Figure 3.5 presents
a comparison between code rates of low-density codes and the rate of an opti-
mum code that yields the same value of ps and, therefore, the same exponent to
�Pe in the range pr � p � ps. It is interesting to observe from the comparison of
Figures 2.4 and 3.5 that these codes can achieve an error probability going down
exponentially with block length even when the expected number of transitions
in a block is considerably more than the minimum distance. Thus although it
is possible to make decoding errors when the number of channel transitions is
half the minimum distance, decoding errors are unlikely until the number of
transitions is much greater than the minimum distance. It is also interesting to
observe that �0n appears to give the most likely distance between transmitted
and decoded code words when decoding errors occur. More precisely, it gives
the distance at which the bound to error probability is largest. It is curious that
this quantity does not change as p varies between pr and ps.

For p < pr, E(s; r) is maximized by r = 0. This is not surprising, since
from Equation (3.68), r = 0 for p = pr. When we substitute r = 0 into
Equation (3.61), some algebraic manipulation yields

max
s;r

E(s; r) = min
�
�B(�) + �

2
ln

1

4p(1� p)
; for p � pr (3.70)

For p � pr, the � that minimizes Equation (3.70) typically will decrease with p
down to the code minimum distance ratio.
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The preceding results have considered the case of codes and code ensembles
in which Equations (3.65), (3.66), and (3.67) have a solution. Unfortunately,
these equations do not have solutions for all codes. No solution corresponds to
the situation in which E(s; r) is maximized for r = �1. Here, Equation (3.64)
is still valid for p � ps, but ps is now given by �0=2, and �0 is now the ratio
of minimum distance to block length for the code. Physically, this means that
there are so many code words at the minimum distance that error correction is
unlikely when more than n�0=2 errors occur. One example of this is the code
with only two code words, one of which is the complement of the other.

3.8 Upper Bound on Rate for Low-Density Codes

The results on error probabilities up to this point have all been upper bounds
on �Pe. We have shown that low-density parity-check codes are at least as good
on the BSC as the optimum code of a somewhat higher rate. However, there is
no direct way of showing that some low-density codes are not a great deal better
than the average. One small result in this direction, however, is the following
theorem which shows that low-density codes cannot be used e�ectively on a
BSC for which channel capacity is arbitrarily close to the code rate.

Theorem 3.3. Let a parity-check code of length n and rate R containing k
digits in each parity-check set be used on a BSC with crossover probability p,
and let the code words be used with equal probability. Let

H(p) = �p ln p� (1� p) ln(1� p)

pk =
1 + (1� 2p)k

2

Then,

R >
H(pk)�H(p)

H(pk)
(3.71)

implies that for a �xed k, the probability of decoding error is bounded away from

0 by an amount independent of n.

Discussion. The channel capacity of a BSC in bits per symbol is 1�[H(p)= ln 2].
Since H(pk) < ln 2, this theorem states that the source rate must be bounded
away from the channel capacity for reliable transmission. Figure 3.5 illustrates
the amount by which the capacity must exceed the source rate for several values
of j and k.

Proof. Let u be a transmitted code word and let v be a received sequence. The
average mutual information in bits per symbol is

1

n
I(u; v) = � 1

n
log2 p(u) +

1

n
log2 pv(u)

= � 1

n
log2 p(v) +

1

n
log2 pu(v)

(3.72)
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If the per digit equivocation satis�es the equation

1

n
log2 pv(u) � � > 0 (3.73)

for some � independent of n, then the probability of decoding error must also
remain bounded away from 0. Equation (3.73) will be established by evaluating
the other terms in Equation (3.72).

Since there are 2nR messages in the code set,

� 1

n
log2 p(u) = R (3.74)

Given the sequence u, each digit in the sequence v has probability p of being
di�erent from the corresponding digit in u, so that

1

n
log2 pu(v) =

�H(p)

ln 2
(3.75)

Consider specifying the received sequence v by �rst specifying the parities of
the n(1�R) parity checks and then specifying the received digits in some set of
nR linearly independent positions in the code. This speci�cation is equivalent
to specifying v since specifying one will make is possible to compute the other.
The probability that a parity-check is satis�ed is the probability that an even
number of errors have occurred within the parity-check set, which isX

i even

�
k

i

�
pi(1� p)k�i =

1 + (1� 2p)k

2
(3.76)

To verify Equation (3.76), rewrite the right hand side as

(1� p+ p)k + (1� p� p)k

2

and expand it in a binomial series.
The uncertainty associated with each parity-check is thus H(pk)= ln 2 bits

where pk = [1 + (1 � 2p)k]=2. Since the uncertainty associated with each in-
formation digit is at most 1 bit and dependencies can only reduce the over-all
entropy, we have

� 1

n
log2 p(v) �

(1�R)H(pk)

ln 2
+R (3.77)

The substitution of Equations (3.74), (3.75) and (3.77) into Equation (3.72)
produces

� 1

n
log2 pv(u) �

H(p)

ln 2
� (1�R)H(pk)

ln 2
(3.78)

From the hypothesis of the theorem, there is an � > 0 that satis�es

R =
H(pk)�H(p) + � ln 2

H(pk)
(3.79)

Substituting Equation (3.79) in Equation (3.78) we obtain Equation (3.73),
proving the theorem.
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4 Decoding

4.1 Introduction

Chapter 3 analyzed the probability of decoding error for (n; j; k) codes on var-
ious binary-input channels using maximum-likelihood decoding. Maximum-
likelihood decoding is a convenient concept since it minimizes the probability
of decoding error and thus measure the e�ectiveness of a code apart from any
particular decoding scheme. However, implementing a maximum-likelihood de-
coder that actually compares the received sequence with all possible code words
is a most unattractive possibility; this is particularly true for long block lengths,
since the size of the code set grows exponentially with block length. A decoder
that is relatively simple in terms of equipment, storage, and computation is
more desirable even if it moderately increases the probability of error. If the
lower probability of error is required, one can simply increase the block length
of the code.

Two decoding schemes will be described here that appear to achieve a rea-
sonable balance between complexity and probability of decoding error. The �rst
is particularly simple but applicable only to the BSC at rates far below capacity.
The second scheme, which decodes directly from the a posteriori probabilities
at the channel output is more promising but can be understood more easily
after the �rst scheme is described.

In the �rst decoding scheme, the decoder computes all the parity-checks
and then changes any digit that is contained in more than some �xed number of
unsatis�ed parity-check equations. Using these new values, the parity checks are
recomputed, and the process is repeated until the parity checks are all satis�ed.

If the parity-check sets are small, this decoding procedure is reasonable, since
most of the parity-check sets will contain either one transmission error or no
transmission errors. Thus when most of the parity-check equations checking on
a digit are unsatis�ed, there is a strong indication that that digit is in error.
For example, suppose a transmission error occurred in the �rst digit of the code
in Figure 2.1. Then parity checks 1, 6, and 11 would be violated, and all three
parity-check equations checking digit 1 would be violated. On the other hand,
at most, one of the three equations checking on any other digit in the block
would be violated.

To see how an arbitrary digit d can be corrected even if its parity-check
sets contain more than one transmission error, consider the tree structure in
Figure 4.1. Digit d is represented by the node at the base of the tree, and each
line rising from this node represents one of the parity-check sets containing digit
d. The other digits in these parity-check sets are represented by the nodes on the
�rst tier of the tree. The lines rising from tier 1 to tier 2 of the tree represent
the other parity-check sets containing the digits on tier 1, and the nodes on
tier 2 represent the other digits in those parity-check sets. Notice that if such
a tree is extended to many tiers, the same digit might appear in more than one
place, but this will be discussed in Section 4.2

Assume now that both digit d and several of the digits in the �rst tier are
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d

j parity checks on d

k � 1 other
digits in �rst

parity-check set

(1; 1) (1; 2) (1; 3) (2; 1) (2; 2) (2; 3) (3; 1) (3; 2) (3; 3)

Figure 4.1: Parity-check set tree

transmission errors. Then on the �rst decoding attempt, the error-free digits in
the second tier and their parity-check constraints will allow correction of errors
in the �rst tier. This in turn will allow correction of digit d on the second
decoding attempt. Thus digits and parity-check equations can aid in decoding
a digit seemingly unconnected with them. The probabilistic decoding scheme
to be described next utilizes these extra digits and extra parity-check equations
more systematically.

4.2 Probabilistic Decoding

Assume that the code words from an (n; j; k) code are used with equal probabil-
ity on an arbitrary binary-input channel. For any digit d, using the notation of
Figure 4.1, an iteration process will be derived that on the mth iteration com-
putes the probability that the transmitted digit in position d is a 1 conditional
on the received symbols out to and including the mth tier. For the �rst itera-
tion, we can consider digit d and the digits in the �rst tier to form a subcode
in which all sets of these digits that satisfy the j parity-check equations in the
tree have equal probability of transmission3.

Consider the ensemble of events in which the transmitted digits in the po-
sitions of d and the �rst tier are independent equiprobable binary digits, and
the probabilities of the received symbols in these positions are determined by
the channel transition probabilities Px(y). In this ensemble the probability of
any event conditional on the event that the transmitted digits satisfy the j
parity-check equations is the same as the probability of an event in the subcode
described above. Thus, within this ensemble we want to �nd the probability
that the transmitted digit in position d is a 1 conditional on the set of received
symbols fyg and on the event S that the transmitted digits satisfy the j parity-
check equations on digit d. We write this as

Pr
�
xd = 1

�� fyg; S�
Using this ensemble and notation, we can prove the following theorem:

3An exception to this statement occurs if some linear combination of those parity-checks
equations not containing d produces a parity-check equation containing only digits in the �rst
tier. This will be discussed later but is not a serious restriction.
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Theorem 4.1. Let Pd be the probability that the transmitted digit in position

d is a 1 conditional on the received digit in position d, and let Pi` be the same

probability for the `th digit in the ith parity-check set of the �rst tier in Figure 4.1.

Let the digits be statistically independent of each other, and let S be the event

that the transmitted digits satisfy the j parity-check constraints on digit d. Then

Pr[xd = 0jfyg; S]
Pr[xd = 1jfyg; S] =

1� Pd
Pd

jY
i=1

�
1 +

Qk�1
`=1 (1� 2Pi`)

1�Qk�1
`=1 (1� 2Pi`)

�
(4.1)

In order to prove this theorem, we need the following lemma:

Lemma 4.1. Consider a sequence of m independent binary digits in which the

`th digit is a 1 with probability P`. Then the probability that an even number of

digits are 1 is
1 +

Qm
`=1(1� 2P`)

2

Proof of the Lemma. Consider the function

mY
`=1

(1� P` + P`t)

Observe that if this is expanded into a polynomial in t, the coe�cient of ti is
the probability of i 1's. The function

Qm
`=1(1�P`�P`t) is identical except that

all the odd powers of t are negative. Adding these two functions, all the even
powers of t are doubled, and the odd terms cancel out. Finally letting t = 1
and dividing by 2, the result is that the probability of an even number of ones.
But Qm

`=1(1� P` + P`) +
Qm

`=1(1� P` � P`)

2
=

1 +
Qm

`=1(1� 2P`)

2

thus proving the lemma.

Proof of the Theorem. By the de�nition of conditional probabilities

Pr[xd = 0jfyg; S]
Pr[xd = 1jfyg; S] =

1� Pd
Pd

jY
i=1

Pr[Sjxd = 0; fyg]
Pr[Sjxd = 1; fyg] (4.2)

Given that xd = 0, a parity check on d is satis�ed if the other (k � 1) positions
in the parity-check set contain an even number of 1's. Since all digits in the
ensemble are statistically independent, the probability that all j parity-checks
are satis�ed is the product of the probabilities of the individual checks being
satis�ed. Using Lemma 4.1 this is

Pr[Sjxd = 0; fyg] =
jY

i=1

�
1 +

Qj
`=1(1� 2Pi`)

2

�
(4.3)
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Similarly,

Pr[Sjxd = 1; fyg] =
jY

i=1

�
1�Qj

`=1(1� 2Pi`)

2

�
(4.4)

Substituting Equations (4.3) and (4.4) into Equation (4.2) we get the statement
of the theorem.

Judging from the complexity of this result, it would appear di�cult to com-
pute the probability that the transmitted digit in position d is a 1 conditional
on the received digits in two or more tiers of the tree in Figure 4.1. Fortunately,
however, the many-tier case can be solved from the 1-tier case by a simple
iterative technique.

Consider �rst the 2-tier case. We can use Theorem 4.1 to �nd the probability
that each of the transmitted digits in the �rst tier of the tree is a 1 conditional
on the received digits in the second tier. The only modi�cation of the theorem
is that the �rst product is taken over only j � 1 terms, since the parity-check
set containing digit d is not included. Now these probabilities can be used in
Equation (4.1) to �nd the probability that the transmitted digit in position d is
1. The validity of the procedure follows immediately from the independence of
the new values of Pi` in the ensemble used in Theorem 4.1. By induction, this
iteration process can be used to �nd the probability that the transmitted digit
d is 1, given any number of tiers of distinct digits in the tree.

The general decoding procedure for the entire code may now be stated. For
each digit and each combination of j�1 parity-check sets containing that digit,
use Equation (4.1) to calculate the probability of a transmitted 1 conditional
on the received symbols in the j � 1 parity-check sets. Thus there are j dif-
ferent probabilities associated with each digit, each one omitting 1 parity-check
set. Next these probabilities are used in Equation (4.1) to compute a second-
order set of probabilities. The probability to be associated with one digit in
the computation of another digit d is the probability found in the �rst itera-
tion, omitting the parity-check set containing d. If the decoding is successful,
then the probabilities associated with each digit approach 0 or 1 (depending on
the transmitted digit) as the number of iterations is increased. The procedure
is valid only for as many iterations as meet the independence assumption in
Theorem 4.1. This assumption breaks down when the tree closes upon itself.
Since each tier of the tree contains (j � 1)(k � 1) times more nodes than the
previous tier, the independence assumption must break down while m is quite
small for any code of reasonable block length. This lack of independence can
be ignored, however, on the reasonable assumption that the dependencies have
a relatively minor e�ect and tend to cancel each other out somewhat. Also,
even if dependencies occur in the mth iteration, the �rst m� 1 iterations have
reduced the equivocation in each digit. Then we can consider the probabilities
after the m � 1 iterations to be a new received sequence that should be easier
to decode than the original received sequence.
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The most signi�cant feature of this decoding scheme is that the computation
per digit per iteration is independent of the block length. Furthermore, it can
be shown that the average number of iterations required to decode is bounded
by a quantity proportional to the log of the log of the block length.

For the actual computation of the probabilities in Theorem 4.1, it appears
to be more convenient to use Equation (4.1) in terms of log-likelihood ratios.
Let

ln
1� Pd
Pd

= �d�d

ln
1� Pi`
Pi`

= �i`�i`

ln
Pr[xd = 0jfyg; S]
Pr[xd = 1jfyg; S] = �0d�

0
d

(4.5)

where � is the sign and � is the magnitude of the log-likelihood ratio. After
some manipulation, Equation (4.1) becomes

�0d�
0
d = �d�d +

jX
i=1

�k�1Y
`=1

�i`

�
f

�k�1X
`=1

f(�i`)

�
(4.6)

where

f(�) = ln
e� + 1

e� � 1

The calculation of the log-likelihood ratios in Equation (4.6) for each digit
can be performed either serially in time or by parallel computations. The serial
computation can be programmed for a general-purpose computer, and the ex-
perimental data in Chapter 6 was obtained in this manner. For fast decoding,
parallel computing is more promising, and Figure 4.2 sketches a simpli�ed block
diagram showing how this can be done.

If the input to the decoder is in the form of a log-likelihood ratio, the �rst
row of boxes in Figure 4.2 computes f(�) for each digit, corresponding to the
rightmost operation in Equation (4.6). The output from the adders on the next

row is
Pk�1

`=1 f(�i`), corresponding to the two rightmost operations in Equa-
tion (4.6). Likewise, successive rows in Figure 4.2 correspond to operations in
Equation (4.6) working to the left. Clearly, Figure 4.2 omits some details, such
as the operations on the signs of the log-likelihood ratios with each digit, but
these create no essential di�culty.

We see from Figure 4.2 that a parallel computer can be simply instrumented
requiring principally a number proportional to n of analogue adders, modulo 2
adders, ampli�ers and nonlinear circuits to approximate the function f(�). How
closely this function must be approximated is a subject for further study, but
there are indications that it is not critical4.

4Some recent experimental work indicates that if computation is strictly digital, 6 sig-
ni�cant bits are su�cient to represent f(�) without appreciable e�ect on the probability of
decoding error.
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Figure 4.2: Decoding apparatus

4.3 Probability of Error Using Probabilistic Decoding

A mathematical analysis of probabilistic decoding is di�cult, but a very weak
bound on the probability of error can be derived easily.

Assume a BSC with crossover probability p0 and assume �rst an (n; j; k)
code with j = 3 parity-check sets containing each digit. Consider a parity-check
set tree, as in Figure 4.1, containing m independent tiers, but let the tiers be
numbered from top to bottom so that the uppermost tier is the 0 tier and the
digit to be decoded is tier m.

Modify the decoding procedure as follow: If both parity checks corresponding
to the branches rising from a digit in the �rst tier are unsatis�ed change the
digit; using these changed digits in the �rst tier, perform the same operation on
the second tier, and continue this procedure down to digit d.

The probability of decoding error for digit d after this procedure is an upper
bound to that resulting form making a decision after the mth iteration of the
probabilistic decoding scheme. Both procedures base their decision only on the
received symbols in the m-tier tree, but the probabilistic scheme makes the most
likely decision from this information.

We now determine the probability that a digit in the �rst tier is in error
after we apply the modi�ed decoding procedure described above. If the digit is
received in error (an event of probability p0) then a parity check constraining
that digit will be unsatis�ed if and only if an even number (including zero) of
errors among the other k � 1 digits in the parity-check set. From Lemma 4.1,
the probability of an even number of errors among k � 1 digits is

1 + (1� 2p0)
k�1

2
(4.7)
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Since an error will be corrected only if both parity checks rising from the digit
are unsatis�ed, the following expression gives the probability that a digit in the
�rst tier is received in error and then corrected.

p0

�
1 + (1� 2p0)

k�1

2

�2
(4.8)

By the same reasoning, Equation (4.9) gives the probability that a digit in the
�rst tier is received correctly but then changed because of unsatis�ed parity
checks.

(1� p0)

�
1� (1� 2p0)

k�1

2

�2
(4.9)

If we combine Equations (4.8) and (4.9), the probability of error of a digit in
the �rst tier after applying this decoding process is

p1 = p0 � p0

�
1 + (1� 2p0)

k�1

2

�2
+ (1� p0)

�
1� (1� 2p0)

k�1

2

�2
(4.10)

By induction it easily follows that if pi is the probability of error after pro-
cessing of a digit in the ith tier, then

pi+1 = p0 � p0

�
1 + (1� 2pi)

k�1

2

�2
+ (1� p0)

�
1� (1� 2pi)

k�1

2

�2
(4.11)

We now show that for su�ciently small p0, the sequence [pi] converges to 0.
Consider Figure 4.3, which is a sketch of pi+1 as a function of pi. Since the

p0p1p2p3p4

45�

pi

pi+1

Figure 4.3: Sketch of pi+1 as a function of pi.

ordinate for one value of i is the abscissa for the next, the dotted zigzag line
illustrates a convenient graphical method of �nding pi for successive values of i.

45



It can be seen from Figure 4.3 that if

0 < pi+1 < pi; for 0 < pi � p0

pi+1 = pi; for pi = 0
(4.12)

then the sequence [pi] ! 0. It can be seen from Equation (4.11) that for p0
su�ciently small, the inequality (Equation (4.12)) is satis�ed. Figure 4.4 gives
the maximum p0 for several values of k.

j k Rate p0
3 6 0.5 0.0395
3 5 0.4 0.0612
4 6 0.333 0.0748
3 5 0.25 0.1069

Figure 4.4: Maximum p0 for weak bound decoding convergence.

The rate at which [pi] ! 0 may be determined by noting from Equa-
tion (4.11) that for small pi

pi+1 � pi2(k � 1)p0 (4.13)

From this it is easy to show that for su�ciently large i,

pi � c[2(k � 1)p0]
i (4.14)

where c is a constant independent of i. Since the number of independent tiers
in the tree increases logarithmically with block length, this bound to the prob-
ability of decoding error approaches zero with some small negative power of the
block length. This slow approach to zero appears to be a consequence of the
modi�cation of the decoding scheme and of the strict independence requirement,
rather than of probabilistic decoding as a whole.

This same argument can be applied to codes with more than 3 parity-check
sets per digit. Stronger results will be achieved if for some integer b, to be de-
termined later, a digit is changed whenever b or more parity-check constraints
rising from the digit are violated. Using this criterion and following the reason-
ing leading to Equation (4.11), we obtain

pi+1 = p0 � p0

j�1X
`=b

�
j � 1

`

��
1 + (1� 2pi)

k�1

2

�`�
1� (1� 2pi)

k�1

2

�j�1�`

+ (1� p0)

j�1X
`=b

�
j � 1

`

��
1� (1� 2pi)

k�1

2

�`�
1 + (1� 2pi)

k�1

2

�j�1�`
(4.15)

The integer b can now be chosen to minimize pi+1. The solution to this mini-
mization is the smallest integer b for which

1� p0
p0

�
�
1 + (1� 2pi)

k�1

1� (1� 2pi)k�1

�2b�j+1
(4.16)
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From this equation, is it seen that as pi decreases, b also decreases. Figure 4.5
sketches pi+1 as a function of pi when b is changed according to Equation (4.16).
The breakpoints in the �gure represent changes in b.

p0p1p2p3p4

pi

pi+1

Breakpoint

Figure 4.5: Behavior of decoding iterations for j > 3.

The proof that the probability of decoding error approaches 0 with an in-
creasing number of iterations for su�ciently small p0 is the same as before.
The asymptotic approach of the sequence [pi] to 0 is di�erent, however. From
Equation (4.16), if pi is su�ciently small, b takes the value j=2 for j even and
(j + 1)=2 for j odd. Using these values of b and expanding Equation (4.15) in
a power series in pi,

pi+1 = p0

�
j � 1
j�1
2

�
(k � 1)

j�1
2 p

j�1
2

i + higher order terms; j odd (4.17)

pi+1 = p0

�
j � 1
j
2

�
(k � 1)

j
2 p

j
2
i + higher order terms; j even (4.18)

Using this, it can be shown that for a suitably chosen positive constant cjk and
su�ciently large i

pi � exp
h
�cjk

�j � 1

2

�ii
; j odd

pi � exp
h
�cjk

� j
2

�ii
; j even

(4.19)

It is interesting to relate this result to the block length of the code. Since there
are (j � 1)m(k� 1)m digits in the mth tier of a tree n must be at least this big,
giving the left side of Equation (4.20). On the other hand, a speci�c procedure
is described in Appendix C for constructing codes satisfying the right side of
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Equation (4.20).

lnn

ln(j � 1)(k � 1)
� m �

ln
h
n
2k � n

2j(k�1)

i
2 ln(j � 1)(k � 1)

(4.20)

When we combine Equations (4.19) and (4.20), the probability of decoding error
for a code satisfying Equation (4.20) is bounded by

Pm � exp�cjk
h n
2k

� n

2j(k � 1)

i�

� =
ln j�1

2

2 ln(j � 1)(k � 1)
j odd

� =
ln j

2

2 ln(j � 1)(k � 1)
j even

(4.21)

For j > 3, this probability of decoding error bound decreases exponentially
with a root on n. Observe that if the number of iterations m which can be
made without dependencies were [2 ln(k � 1)(j � 1)]=(ln j=2) times larger, then
the probability of decoding error would decrease exponentially with n. It is
hypothesized that using the probabilistic decoding scheme and continuing to
iterate after dependencies occur will produce this exponential dependence.

A second way to evaluate the probabilistic decoding scheme is to calculate the
probability distributions of log-likelihood ratios in Equation (4.6) for a number
of iterations. This approach makes it possible to �nd whether a code of given
j and k is capable of achieving arbitrarily small error probability on any given
channel. With the aid of the IBM 7090 computer, it was found that a code with
j = 3, k = 6 is capable of handling transition probabilities up to 0:07 and with
j = 3, k = 4, transition probabilities up to 0:144 can be handled. These �gures
are particularly interesting since they disprove the common conjecture that the
computational cuto� rate of sequential decoding [17] bounds the rate at which
any simple decoding scheme can operate.
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5 Low-Density Codes with Arbitrary Alphabet

Sizes

The results of Chapters 2, 3, and 4 concerning binary low-density parity-check
codes will be extended in this chapter to codes with an arbitrary alphabet size.
The letters in the alphabet will be A'nary digits, where A is the alphabet size
and the A'nary digits are numbers from 0 to A � 1 inclusive. The de�nitions
of (n; j; k) parity-check matrices and ensembles of matrices are the same here
as in Chapter 2. The code words going with such a matrix will be sequences of
A'nary digits such that the sum of the digits within any parity-check set is zero
modulo A.

5.1 Distance Functions

De�ne the distance between two sequences in a code of alphabet size A as the
number of positions in which the sequences di�er. The weight of a sequence is
the number of nonzero digits or the distance from the all-zero sequence. The
distance function N(`) of a code is again de�ned as the number of code words
of weight `. It follows from the group properties of such a code [12] that N(`) is
the number of words at distance ` from any given code word. In order to upper
bound N(`) for these codes, we need the following theorem, which is a direct
extension of Theorem 2.3

Theorem 5.1. For each code in an (n; j; k) ensemble with alphabet size A, the
number N1(`) of sequences of weight ` that satis�es any one of the j blocks of

n=k checks is bounded by

N1

hn
k
�0A(s)

i
� exp

n

k

�
�A(s)� s�0A(s) + (k � 1) lnA

�
(5.1)

where s is an arbitrary parameter and �A(s) is de�ned by

�A(s) = lnA�k
n�

1 + (A� 1)es
�k

+ (A� 1)(1� es)k
o

�0A(s) =
d�A(s)

ds

(5.2)

Proof. Consider a particular check set of k digits. Let m(`) be the number of
di�erent sequences of k A'nary digits of weight ` that sum to 0 modulo A. We
shall �rst show that for arbitrary t

kX
`=0

m(`)t` =
1

A

�
1 + (A� 1)t

�k
+
A� 1

A
(1� t)k (5.3)

Consider the double enumerating function

B(t; r) =
�
1 + tr + tr2 + � � �+ trA�1

�k
(5.4)

=
X
`;j

b`jt
`rj (5.5)
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Clearly b`j is the number of sequences of length k containing ` nonzero A'nary
digits that sum to j. Now consider the expression

1

A

A�1X
a=0

B
�
t; e

i2�a
A

�
=
X
`;j

b`jt
`
� 1
A

A�1X
a=0

exp
ij2�a

A

�
(5.6)

The term in parenthesis in Equation (5.6) sums to 0 for all j that are not
multiples of A due to the uniform spacing of the terms around the unit circle of
the complex plane. If j is a multiple of A, the bracketed term sums to 1. Thus

1

A

A�1X
a=0

B
�
t; e

i2�a
A

�
=

kX
`=0

m(`)t` (5.7)

Finally for r 6= 1, from Equation (5.4) we get

B(t; r) =
h
1 + t

�r � rA

1� r

�ik
(5.8)

B
�
t; e

i2�a
A

�
=

(
(1� t)k; a 6= 0�
1 + (A� 1)t

�k
; a = 0

(5.9)

Combining Equations (5.9) and (5.7), we get Equation (5.3).
Now consider an ensemble in which all n-length A'nary sequences that satisfy

the given n=k parity checks are equally likely. Then, over any k digits in a check
set, each of the Ak�1 k-length sequences satisfying the check are equally likely,
and from Equation (5.3), the moment-generating function for the weights of
these sequences is

g(s) = A�k
n�

1 + (A� 1)es
�k

+ (A� 1)
�
1� es

�ko
(5.10)

Now the theorem follows in exactly the same way as in Theorem 2.3.

There are altogether
�
n
`

�
(A � 1)` A'nary n-length sequences of weight `, so

that the probability that a randomly chosen sequence of weight ` will satisfy
the block of n=k parity checks is

N1(`)�
n
`

�
(A� 1)`

Since over the ensemble of codes, each of the j blocks of parity checks is in-
dependent, the probability P (`) that a sequence of weight ` is a code word
is

P (`) =

"
N1(`)�

n
`

�
(A� 1)`

#j
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Thus, following Chapter 2, the distance function Njk(`) and the minimum dis-
tance distribution function can be bounded by

Njk(n�) � C(�; n) exp�nBjkA(�) (5.11)

Pr(D � n�) �
n�X
`=2

C(�; n) exp�nBjkA

� `
n

�
(5.12)

where

BjkA(�) = (j � 1)
�
H(�) + � ln(A� 1)

�� j

k

�
�A(s) + (k � 1) lnA

�
+ js�

(5.13)

C(�; n) =
�
2�n�(1� �)

� j�1
2 exp

j � 1

12n�(1� �)
(5.14)

� =
�0A(s)

k
(5.15)

and �A(s) is given by Equation (5.2).
It can be shown by methods similar to those of Appendix A that the function

BjkA(�) is 0 at � = 0; it rises with an initial in�nite slope, has one zero crossing
at the typical minimum distance, and then remains negative.

5.2 Probability of Decoding Error

Consider a channel with an input alphabet of A letters which for convenience
we take to be A'nary digits. Let the output be y and, as in Chapter 3, let f(y)
be an arbitrary function of the output. Let u0; u1; : : : ; uj ; : : : ; uM�1, where
uj = x1j ; x2j ; : : : ; xnj be the M code words of an A'nary block code of length n.
De�ne the discrepancy between an input word u = (x1; : : : ; xn) and an output
v = (y1; : : : ; yn) as

D(u; v) =

nX
i=1

�(xi; yi) (5.16)

where

�(x; y) = ln
P (yjx)
f(y)

(5.17)

De�ne

gi(s) = exp s�i (5.18)

hij(r; t) = exp r�i + t(�j � �i) (5.19)

The averaging in Equations (5.18) and (5.19) is according to the distribution
of channel outputs y conditioned on xi being transmitted. Now we restrict our
attention to channels which are symmetrical in the sense that gi(s) and hij(r; t)
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are independent of i and j for an appropriate choice of f(y). Further, we restrict
our attention to f(y) functions for which this symmetry is achieved.

One example of such a channel is a channel with A'nary digits for both
input and output and a probability 1� p of receiving the transmitted digit and
p=(A� 1) of receiving any other digit. Another example is that of A orthogonal
equal energy signals on either a white Gaussian noise channel or a Rayleigh
fading channel similar to Figure 3.1.

Maximum-likelihood decoding on this channel is equivalent to choosing ui
that minimizes D(ui; v) when v is the received word. Thus, when u0 is trans-
mitted, we can bound the probability of maximum-likelihood decoding error
by

P (e) � P1 + P2 (5.20)

P1 � Pr

� nX
i=1

�(xi0; yi) � nd

�
(5.21)

P2 �
M�1X
j=1

Pr

� nX
i=1

�(xi0; yi) < nd;
nX
i=1

�(xij ; yi)� �(xi0; yi) < 0

�
(5.22)

Theorems 3.1 and 3.2 can now be used directly to bound Equations (5.21) and
(5.22).

P1 �
�
g(s)

�n
exp(�nsd); s � 0 (5.23)

P2 �
nX
`=0

N(`)
�
h(r; t)

�`�
h(r; 0)

�n�`
exp(�nrd) r � 0; t � 0 (5.24)

where g(s) and h(r; t) are given by Equations (5.18) and (5.19) and N(`) is the
distance function of the code. For an ensemble of parity-check codes, Equa-
tions (5.20), (5.23), and (5.24) bound the average probability of decoding error
over the ensemble in terms of the arbitrary parameters d, f(y), s � 0, r � 0,
t � 0. As in Chapter 3, t = (r � 1)=2 optimizes the bound over t, but no other
simpli�cation has been found. Equations (5.20), (5.23), and (5.24) are su�cient,
however, in conjunction with Equation (5.11) to demonstrate the exponential
decrease of probability of error with block length for an expurgated ensemble of
(n; j; k) codes at su�ciently low rates.

5.3 Probabilistic Decoding

Consider an (n; j; k) code of A'nary digits, and assume that the code words have
equal probability. As in Chapter 4, using the notation of Figure 4.1, we wish to
�nd Pm(xd = a), the probability that the transmitted digit in position d was an
a, 0 � a � A� 1, given the received symbols in the m tiers of the parity-check
set tree on digit xd. First we shall �nd P1(xd = a).

Consider the ensemble in which the transmitted digits in position d and the
�rst tier are independent equiprobable A'nary digits, and the received digits are
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determined according to the channel. Within this ensemble, the probability of
any event conditional on the j parity checks of the �rst tier being satis�ed is
the same as the probability of the event in the actual code. Thus, using our
previous notation,

P1(xd = a) = Pr(xd = ajfyg; S) (5.25)

Theorem 5.2. Let P0(xi` = a) be the probability that the `th transmitted A'nary
digit in the ith parity-check set on d is a, given the received symbol in that po-

sition. Assume that all combinations of xd and the xi` that satisfy the j parity

checks on xd are equally likely. Then

P1(xd = a) =
P0(xd = a)

Qj
i=1 gi(�a)PA�1

a=0 P0(xd = a)
Qj

i=1 gi(�a)
(5.26)

where

Gi(t) =
A�1X
a=0

gi(a)t
a =

k�1Y
`=1

A�1X
a=0

P0(xi` = a)ta (5.27)

In Equation (5.26), �a is taken modulo A, and the multiplication in Equa-

tion (5.27) is taken modulo tA.

Equation (5.27) yields an explicit solution for gi(a) for each i, but computa-
tionally, gi(a) is found for all a, 0 � a � A � 1 simultaneously. Before proving
this theorem, the following lemma is needed.

Lemma 5.1. Consider a sequence of L statistically independent A'nary digits

in which the `th letter assumes the value a with probability P`(a). Then the

probability that the modulo A sum of the digits has the value a is given by g(a)
in the expansion

G(t) =

A�1X
a=0

g(a)ta =

LY
`=1

A�1X
a=0

P`(a)t
a (5.28)

where the product in Equation (5.28) is taken modulo tA.

Proof of Lemma. Note that the right side of Equation (5.28) using ordinary
multiplication is simply the z transform for the sum of the ` letters. In other
words, the coe�cient of ta in the expanded form of Equation (5.28) is the
probability that the sum of the digits is a. Taking the product modulo tA

simply adds all coe�cients for which a has the same value modulo A, thus
proving the lemma.

Proof of Theorem. Using Equation (5.25), with some manipulation of condi-
tional probabilities, we get

P1(xi = a) =
Pr(Sjxd = a; fyg)P0(xd = a)

Pr(Sjfyg)
=

Pr(Sjxd = a; fyg)P0(xd = a)PA�1
a0=0 Pr(Sjxd = a0; fyg)P0(xd = a0)

(5.29)
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Now we observe that the term Pr(Sjxd = a; fyg) is the probability that each set
of k�1 digits other than d in the parity-check sets add to �a. From Lemma 5.1,

Pr(Sjxd = a; fyg) =
jY

i=1

gi(�a mod A) (5.30)

where gi(�a mod A) is given by Equation (5.27). Substituting Equation (5.30)
into Equation (5.29), we get the statement of the theorem.

Equation 5.26 can be extended immediately to an iterative decoding pro-
cedure by the same arguments as used in Chapter 4. In successive iterations,
P0(xi` = a) becomes Pm(xi` = a), and j di�erent probabilities must be calcu-
lated for each digit, each probability leaving one of the j parity checks out of
consideration.

5.4 Probability of Error Using Probabilistic Decoding

Consider a channel with A inputs and A outputs both labeled from 0 to A� 1.
The channel transition probabilities are given by

P (yajxa) = 1� p0; P (yajxb) = p0
A� 1

; for any a, b such that a 6= b

Consider a parity-check set tree as in Figure 4.1 with m independent tiers num-
bered from top to bottom with j = 3. Modify the decoding procedure as
follows: If both parity checks rising from a digit are unsatis�ed and both have
the same value, change the digit so as to satisfy both checks; otherwise leave the
digit unchanged. The probability of error in this procedure overbounds that for
probabilistic decoding. The probability that a digit in the �rst tier is received
incorrectly and then corrected is P0Q

2 where Q is the probability of either no
errors or of errors adding to 0 mod A in one of the sets of k�1 digits. We de�ne
the error in a digit as (y � x) mod A. Next it will be shown that

Q =
1 + (A� 1)

�
1� Ap0

A�1
�k�1

A
(5.31)

The z transform for the ordinary sum of the errors in k � 1 digits is

G(z) =

�
1� p0 +

p0
A� 1

A�1X
a=1

za
�k�1

(5.32)

G(z) =

�
1� p0 +

p0
A� 1

z � zA

1� z

�k�1
; for z 6= 1 (5.33)

= 1; for z = 1 (5.34)

Now consider the quantity

1

A

A�1X
a=0

G
�
e
j2�a
A

�

54



All powers of z in this expression that are not multiples of A cancel out due
to their uniform spacing around the unit circle in the complex plane. The
coe�cients of powers that are multiples of A add, thus giving Q.

Q =
1

A

A�1X
a=0

G
�
e
j2�a
A

�
(5.35)

Now from Equation (5.33)

G
�
e
j2�a
A

�
=
�
1� p0 +

p0
A� 1

�k�1
; for a 6= 0 (5.36)

Finally, combining Equations (5.36) and (5.34), we get Equation (5.31). Thus,
the probability that a digit in the �rst tier is received incorrectly and then
corrected is

p0

(
1 + (A� 1)

�
1� Ap0

A�1
�k�1

A

)2

(5.37)

The probability of receiving a digit in the �rst tier correctly and then changing
it due to two identically violated parity checks is

(1� p0)(1�Q)
1�Q

A� 1
(5.38)

The term (1�Q) in Equation (5.38) is the probability that the errors in one set
of k � 1 digits will not satisfy the parity, and the term (1 � Q)=(1� A) is the
probability that the other set will have the same value modulo A as the �rst
set.

Combining Equations (5.37), (5.38), and (5.31), we get the probability of
error for a digit in the �rst tier after the �rst iteration of the decoding process

p1 = p0 � p0

(
1 + (A� 1)

�
1� Ap0

A�1
�k�1

A

)2

+ (1� p0)(A� 1)

(
1� (A� 1)

�
1� Ap0

A�1
�k�1

A

)2

(5.39)

Similarly, for successive tiers,

p1 = p0 � p0

(
1 + (A� 1)

�
1� Api

A�1
�k�1

A

)2

+ (1� p0)(A� 1)

(
1� (A� 1)

�
1� Api

A�1
�k�1

A

)2

(5.40)
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The rate at which [pi]! 0 can be determined from Equation (5.40). For pi
small,

pi+1 � pi2(k � 1)p0 (5.41)

It is interesting to observe that Equation (5.41) is identical to Equation (4.14),
although, of course, the maximum value of p0 for which pi from Equation (5.40)
converge to 0 is di�erent. This value increases with A up to 1=2(k � 1).

A bound on decoding error with j > 3 is considerably more di�cult. The
decoding scheme will be to change a digit whenever a number b to be determined
later, or more of the parity checks rising from a digit all have the same value.
The digit will be changed in such a way as to satisfy the b parity checks. If
b > (j � 1)=2, it can be shown in the same way as in Section 4.3 that

pi+1 = p0 � p0

j�1X
`=b

�
j � 1

`

�
Q`
i(1�Qi)

j�1�`

+ (1� p0)

j�1X
`=b

�
j � 1

`

��
1�Qi

A� 1

�`�
1� 1�Qi

A� 1

�j�1�`
(A� 1) (5.42)

where

Qi =
1 + (A� 1)

�
1� Api

A�1
�k�1

A
(5.43)

The integer b can now be chosen to minimize pi+1 subject to the restriction b >
(j�1)=2. The solution to this minimization is the smallest integer b > (j�1)=2
for which

1� p0
p0

� Qb
i (A� 1)j�2

(1�Qi)2b+1�j(A� 2�Qi)j�1�b
(5.44)

As pi approaches 0, b = j=2 for j even and (j+1)=2 for j odd. Then expanding
Equation (5.42) in a power series in pi, we obtain

pi+1 = p0

�
j � 1
j�1
2

��
pi(k � 1)

� j�1
2 + � � � ; j odd (5.45)

pi+1 =
h
p0 +

1� p0
(A� 1)b

i�j � 1
j
2

��
pi(k � 1)

� j
2 + � � � ; j even (5.46)

Observe that Equation (5.45) is identical to Equation (4.17) and Equation (5.46)
is identical to Equation (4.18) except for the coe�cient.

From Equation (4.18) on, the derivation of error probability in Chapter 4
does not use the restriction of a binary binary alphabet, and therefore the
bound on error probability in Equation (4.21) is valid for codes of arbitrary
alphabet size. The coe�cient cjk appearing in Equation (4.21) is a function of
the alphabet size A, however.
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6 Experimental Results

The probability of decoding error P (e) associated with a coding and decoding
scheme can be directly measured by simulating both the scheme and the channel
of interest on a computer. Unfortunately, the experiment must be repeated until
there are many decoding failures if P (e) is to be evaluated with any accuracy,
and thus many times 1=P (e) trials are necessary. For block lengths of about
500, an IBM 7090 computer requires about 0.1 second per iteration to decode
a block by the probabilistic decoding scheme. Consequently, many hours of
computation time are necessary to evaluate even a P (e) in the order of 10�4.

Because of limitations on available computer time, all of the results pre-
sented will be for situations in which P (e) is large. Certainly it would be more
interesting to have results for small P (e). However, the data presented can
probably be extrapolated with some degree of con�dence to situations in which
P (e) is 10�5 or 10�6. Furthermore, even the limited data presented here give
some indication of the variability of P (e) with such parameters as block length,
code rate, and type of channel.

6.1 Code Generation

All of the results in this chapter were obtained with low-density parity-check
codes generated on an IBM 7090 computer by a pseudorandom procedure. More
speci�cally, the parity-check matrices were chosen in the same way as the ensem-
ble of low-density matrices was generated in Chapter 2. The �rst submatrix of
n=k parity-check sets contained successive sets of k digits, and each succeeding
submatrix was a random column permutation of the �rst. The random permu-
tation was performed with a pseudorandom number routine and then modi�ed
so that no two parity-check sets would contain more than one digit in common.
This modi�cation guaranteed the validity of the �rst iteration in the decod-
ing process and also excluded the remote possibility of choosing a code with a
minimum distance of 2.

The codes generated in this way were stored in the computer and used in
decoding the noise sequences generated by simulated binary symmetric channels,
white Gaussian noise channels, and Rayleigh fading channels. In order to reduce
computer time, however, the code word to be transmitted was always the all-
zero sequence. This is valid since, as explained in Chapter 3, the probability
of decoding error on a symmetric binary-input channel is independent of the
transmitted code word. This simpli�cation, of course, requires extreme care
to ensure that the actual simulation of decoding maintains complete symmetry
between positive and negative outputs.

6.2 Binary Symmetric Channel

A true simulation of a binary symmetric channel (BSC) would involve choosing
random error sequences in which crossovers (that is, channel errors, represented
by the crossed transition lines in Figure 3.1a) occur independently with a given
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Figure 6.1: Experimental results on
BSC.
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Figure 6.2: Experimental results on
BSC.
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Figure 6.3: Experimental results on
BSC.
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Figure 6.4: Experimental results on
BSC.
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probability p. Whether probabilistic decoding with a particular code can decode
such a sequence depends very strongly on the number of crossovers c generated
in such a process. Since c has a well known (that is, binomial) distribution, it
is possible to evaluate experimentally the probability of decoding error given
c crossovers and then calculate P (e) for a BSC from this data. This latter
procedure has the advantage of giving additional insight into the operation
of the decoding scheme and also of facilitating comparison with other coding
schemes that are oriented toward correcting a �xed number of crossovers.

Figures 6.1 to 6.4 present the actual data gathered this way. The abscissa
on each graph is the ratio of number of crossovers to block length c=n and the
ordinate is the digit error probability after decoding. In all these experiments,
except for one code with a rate 1

2 and block length 126, the decoder failed
to decode rather than decoding to an incorrect message. In other words, the a

posteriori probabilities computed by the decoder failed to converge to either 1 or
0. This is an important point in any communication system in which a feedback
link is available since undecoded blocks of information can be retransmitted. It
is important to note that P (e) as shown in Figures 6.1 to 6.4 is the decoding
error probability per digit that ensues when the best guess is made about each
digit in blocks that can't be decoded. The probability of failure to decode a
block is typically about 10 times larger than P (e).

Ratio of transmission error to blocklength

P (e)

10�4

10�3

10�2

10�1

0:03 0:04 0:05 0:06 0:07 0:08 0:09 0:10 0:11 0:12

Bose-
Chaudhuri
code
n = 511
R = 1

2
Low-density
code,
probabilistic
decoding,
experimental,
n = 504,
j=3, k=6
R = 1

2

Low-density
code, maximum-
likelihood decoding
n=504, j=3,
k= 6, R = 1

2

Sphere
packed
code
n=504
R= 1

2

Figure 6.5: Comparison of experimental results using probabilistic decoding to
theoretical results with maximum-likelihood decoding.

The median number of blocks with decoding failures per point plotted on
Figures 6.1 to 6.4 is 8; many points, particularly where P (e) is small, were
evaluated from data containing decoding failures in only 1 or 2 blocks. Thus the
position of individual points on these curves would probably change appreciably
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with more data.
Figure 6.5 compares the experimental data using probabilistic decoding on a

code with n = 504, j = 3, and k = 6 to the theoretical probability of error that
would result for the same code if maximum-likelihood decoding were used. For
comparison purposes, a Bose-Chaudhuri code of approximately the same block
length and rate is included. The value of P (e) for this code assumes the use of
one of the known algorithms for decoding such as Peterson's [12]. These algo-
rithms correct only numbers of crossovers less than half the minimum distance.
It appears from the curve that the Bose-Chaudhuri code would perform better
at low crossover probabilities and the low-density code would perform better at
high crossover probabilities.

6.3 White Gaussian Noise Channel

In the following two sections each of the channels under consideration will consist
of a binary data transmitter, a physical channel, and a likelihood receiver. The
output from the likelihood receiver is assumed to be the log-likelihood ratio,

y = ln
Pr[x = 0jr(t)]
Pr[x = 1jr(t)]

where x is a transmitted digit, r(t) is the received waveform corresponding to
that digit, and y is the output from the likelihood receiver for that digit. Of
course, this output could be converted into a binary digit before attempting
to decode a block of data, but this conversion would destroy some information
about the transmitted sequence. Since probabilistic decoding operates naturally
with log-likelihood ratios, it is natural to ask how much can be gained in terms
of error probability, signal power or transmission rate by using the output of a
likelihood receiver directly with the decoder rather than making binary decisions
�rst. For both the channels considered here, this gain turns out to be of central
importance.

For the white Gaussian noise channel, assume that one of two waveforms
is transmitted every T seconds. These signals appear at the receiver, suitably
attenuated and delayed, as two functions x0(t) and x1(t), both nonzero only
from t = 0 to t = T , and both of equal energy,

Ec =

Z T

0

x20(t) dt =

Z T

0

x21(t) dt

Let n(t) be a sample of white Gaussian noise of power density N0 per unit
bandwidth that is added to the signal at the receiver. Then the log-likelihood
ratio y computed by an ideal receiver can easily be shown [8] to be

y =
2

N0

Z T

0

�
x0(t)� x1(t)

�
r(t) dt

where r(t) is the received waveform. When x = 0 is the transmitted digit, then
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e�x
2=2 dx

Figure 6.6: Comparison between low-density codes and no coding, white Gaus-
sian noise.

r(t) = x0(t)+n(t), and y is easily shown to be Gaussian with probability density

P (yjx = 0) =
1p
2��

exp�
�
y � �2

2

�2
2�2

(6.1)

�2 =
4Ec(1� �)

N0
; � =

1

Ec

Z T

0

x0(t)x1(t) dt (6.2)

Likewise,

P (yjx = 1) =
1p
2��

exp�
�
y + �2

2

�2
2�2

Figure 3.1c contains a sketch of these probabilities.
A number of experiments were performed on the 7090 computer for codes

of various block lengths and rates in which the channel outputs were chosen
by a pseudorandom number generator according to the probability density in
Equation (6.1), which corresponds to the all-zero code word. The simulated
decoder stored these received words in the computer and then attempted to
decode them by probabilistic decoding. The results of these experiments for a
block length of 504 and rates of 1

4 and 1
2 are shown in Figure 6.6 The signal

energy E appearing on the abscissa is the available energy per information digit
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so that

E =
Ec

R
(6.3)

These data assume antipodal signals, or � = �1 in Equation (6.2). For uncor-
related signals, add 3 db to each value on the abscissa.

The fact that the error probability is lower for the rate 1
2 code than for the

rate 1
4 code needs some explanation. Consider two systems, both with the same

available signal power, noise power, block length, and number of information
digits per second. If one system is coded at rate 1

2 and the other at rate 1
4 ,

then the time duration of a block length for the rate 1
2 code is twice that for

the rate 1
4 code. Thus the improvement at rate 1

2 can be explained primarily
by the longer constraint time of the code. While there is great theoretical merit
in using the constraint time or constraint length in information bits as a basis
of comparison for di�erent rates, the cost of implementing a low-density parity
check decoder is determined primarily by the constraint length in channel digits;
thus we have used the latter basis of comparison here.

Consider now two systems, one coded at rate 1
2 and the other uncoded, both

having a �nal digit error probability of 10�3 and both transmitting the same
number of information symbols per second. Since the abscissa of Figure 6.6
is given in terms of energy per information digit, Figure 6.6 indicates that the
coded system requires 6:8� 2:4 db or 4.4 db less signal power than the uncoded
system. The rate 1

4 code is less favorable since the increased error-correcting
power does not quite o�set the loss in signal energy per channel digit. (See
Figure 6.7.) Although no experimental data using likelihood receivers exist for
the rate 1

3 and 2
3 codes, it appears unlikely from the poor performance of these

codes on the BSC that they would have any advantages over the rate 1
2 code.

Finally, to illustrate the advantage of likelihood receivers over decision re-
ceivers for decoding, consider Figure 6.8. This compares the experimental results
for a low-density code, using a likelihood receiver and probabilistic decoding to
a lower bound, to P (e) for any code of the same block length and rate, using
a decision receiver and maximum likelihood decoding. The abscissa, p, in Fig-
ure 6.8 is the probability of crossover that would exist if a decision were made.
In other words

p =

Z 1
q

2Ec
N0

1p
2�

e�x
2=2 dx

It is signi�cant in Figure 6.8 to observe the importance of a likelihood receiver
in terms of the error-correcting power of a code. It suggests that the concept
of \optimum code" is not as relevant to communication as its name indicates,
and that the simplicity and exibility of coding schemes deserve much greater
attention than their being \optimum."

6.4 Rayleigh Fading Channel

Assume that one of two equiprobable, equal energy, uncorrelated narrow band
signals is transmitted every T seconds, and let x0(t) and x1(t) be the complex
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n = 126
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n = 1008

n=126

n=252

n=504

n=1008

Figure 6.7: E�ect of block length for rate 1
2 code on white Gaussian noise

channel.

positive frequency representations of these signals. Assume that the complex
representation of the received signal is

r(t) = �ej�x0(t) + n(t); x0(t) transmitted

r(t) = �ej�x1(t) + n(t); x1(t) transmitted

where � is Rayleigh distributed and � is a random phase,

Pr(�) = �e��
2=2; � � 0

Pr(�) =
1

2�
; 0 � � � 2�

and n(t) represents white Gaussian noise of power density N0.
In the absence of any information about � or � before the transmission

interval, it can be shown that all the information whether x0(t) or x1(t) was
transmitted lies in the sampled envelopes z0 and z1 of the outputs of �lters
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p = Probability of crossover

P (e)

10�4

10�3
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10�1
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Decision receiver,
sphere-packing
lower bound to
P (e)

Likelihood
receiver,
experimental
performance
white
Gaussian
noise

Rayleigh
fading
channel

Figure 6.8: Comparison between decision receiver and likelihood receiver; n =
504, R = 1

2 .

matched to x0(t) and x1(t),

z0 =

����
Z T

0

x�0(t)r(t) dt

����E� 1
2

c

z1 =

����
Z T

0

x�1(t)r(t) dt

����E� 1
2

c

Pierce [13] shows that z0 and z1 are positive Rayleigh distributed random vari-
ables with variance N0 + Ec and N0 depending on whether x0(t) or x1(t) was
transmitted,

Pr(zi) =
zi

N0 +Ec
exp� z2i

2(N0 +Ec)
; for i = 0 of 1, if xi(t) is transmitted

(6.4)

Pr(zi) =
zi
N0

exp� z2i
2N0

; if signal other than xi(t) is transmitted (6.5)

where

Ec =

Z T

0

x0(t)x
�
0(t) dt (6.6)
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It follows immediately from Equations (6.4) and (6.5) and the independence of
z0 and z1 that the log-likelihood ratio for the receiver output is given by

y = ln
Pr(x = 0jz0; z1)
Pr(x = 1jz0; z1) =

�
z20 � z21

�� 1

2N0
� 1

2(N0 +Ec)

�
(6.7)

Finally, it follows from Equations (6.4), (6.5) and (6.7) that

Pr(yjx = 0) =

8><
>:

1 +A

A(2 +A)
e�

y
A ; y � 0

1 +A

A(2 +A)
e
y(1+A)

A ; y � 0
(6.8)

where

A =
Ec

N0

A Rayleigh fading channel was simulated on the computer by using a pseudo-
random number generator to produce outputs y according to the probability
distribution of Equation (6.8). Successive values of y were chosen indepen-
dently, which appears somewhat unrealistic since we assumed the path strength
was constant over the baud length, T . This should be a reasonable assumption,
however, when the fading rate is comparable to the baud length, and a good
assumption when scrambling is employed between the digits of successive blocks
of a code.

E

N0

(db) =
Ec

RN0

(db)

P (e)

10�4

10�3

10�2

10�1

10 11 12 13 14 15 16 17 18 19

P (e) = 1
2+(E=N0)

Double-time
diversity

Triple-time
diversity

R= 1
2 ,

n=504

R= 1
4 ,

n=504

Figure 6.9: Comparison between low-density codes and time diversity for
Rayleigh fading channel.

Figure 6.9 shows the results of such a simulation. Figure 6.9 shows a much
more marked di�erence between coding and no coding than Figure 6.6, and
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this is, of course, due to the slow decrease of bit error rates with signal power
on Rayleigh fading channels. Figure 6.9 also indicates that the rate 1

4 code is
somewhat better than the rate 1

2 code, but there are not enough data here to
be convincing. Also, the rate 1

2 code contains twice as many information digits
per block as the rate 1

4 code, so that a block lasts twice as long for the same
information rate in bits per second. This is advantageous when the fades are
longer than a baud length.

E

N0

(db)

P (e)

10�4

10�3

10�2

10�1

10 11 12 13

n=1008

n=1008

n=504

n=504

n=252

n=252

n=124

n=124

Figure 6.10: E�ect of block length on error probability for Rayleigh fading
channel; R = 1

4 .

Figure 6.10 shows the e�ect of block length on error probability for the rate
1
4 code. The error probabilities for the smaller block length codes appear to
decrease much more slowly with increasing signal power than the long block
length codes, but more data would be helpful here.

Finally, Figure 6.8 again shows the advantage of a likelihood receiver over a
decision receiver for the Rayleigh fading channel. The Rayleigh fading channel
and Gaussian channel are so di�erent in their characteristics that it is conjec-
tured that this type of gain holds for most symmetric binary-input channels
(with the obvious exception of the BSC).
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A Properties of the Function B(�)

In Chapter 2, the following bound was derived for the minimum-distance dis-
tribution function of an (n; j; k) ensemble of codes:

Pr(D � n�) �
n�X
`=2

C(�; n) exp�nB(�)

Pr(D � n�) � 1

(A.1)

where

� =
`

n

B(�) = (j � 1)H(�)� j

k

�
�(s) + (k � 1) ln 2

�
+ js� (A.2)

C(�; n) =
�
2�n�(1� �)

� j�1
2 exp

j � 1

12n�(1� �)
(A.3)

�(s) + (k � 1) ln 2 = ln 1
2

h
(1 + es)k + (1� es)k

i
(A.4)

�0(s)

k
= � for optimum bound (A.5)

In this appendix three theorems will be proved concerning Equation (A.1). The
�rst theorem will analyze the behavior of B(�), the second will bound the
summation in Equation (A.1) in terms of the �rst and last terms, the third
will show that as j and k increase, Equation (A.1) approaches the minimum-
distance distribution function derived for the equiprobable ensemble of codes in
Equation (2.5).

Theorem A.1. Assume k > j � 3, and let B(�) be de�ned in Equations (A.2),
(A.4) and (A.5). Then

1. lim�!0 B(�) = 0,

2. lim�!0
dB
d� =1,

3. B(�) has only one zero in the range 0 < � < 1
2 ,

4. B(�) has no local minimum within the range where B(�) > 0.

Proof. 1. We show that lim�!0B(�) = 0 by showing that each of the three
terms on the right of Equation (A.2) approaches 0. The term H(�) is given
by �� ln� � (1 � �) ln(1 � �) and clearly approaches 0. Di�erentiating Equa-
tion (A.4), we get

� =
�0(s)

k
=
es
�
(1 + es)k�1 � (1� es)k�1

�
(1 + es)k + (1� es)k

(A.6)
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�

Figure A.1: Sketch of s and � as functions of z.

and from this, s ! �1 as � ! 0. But from Equation (A.4), lims!�1 �(s) +
(k � 1) ln 2 = 0. Finally,

js� =
jses

�
(1 + es)k�1 � (1� es)k�1

�
(1 + es)k + (1� es)k

which also approaches 0 as s! �1.

2. From Equation (A.2),

dB

d�
=
@B(�)

@�
+
@B(�)

@s

�@�
@s

��1
= (j � 1) ln

1� �

�
+ js

Making the substitution

z =
1� es

1 + es

s = ln
1� z

1 + z

(A.7)

and performing some manipulation on Equation (A.6), we get

� =
1� z

2

1� zk�1

1 + zk
(A.8)

In Figure A.1, s and � are sketched as functions of z.

lim
�!0

dB

d�
= lim

z!1
(j � 1) ln

�1 + z

1� z

��1 + zk�1

1� zk�1

�
+ j ln

1 + z

1� z

lim
�!0

dB

d�
= lim

z!1
ln
�1 + z

1� z

��1 + zk�1

1� zk�1

�j�1
lim
�!0

dB

d�
= lim

z!1
ln

(1 + zk�1)j�1

(1� zk�1)j�2(1 + z)(1 + z + � � �+ zk�2)

(A.9)

lim�!0
dB
d� =1 for j � 2 > 0, or in other words, for j � 3.
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3. Before proving parts 3 and 4 of the theorem, we must show that dB=d� has
only one extremum. Using Equation (A.9), we obtain the derivative of dB=d�
with respect to z.

d

dz

�dB
d�

�
=

2

1� z2
+

2(j � 1)(k � 1)zk�2

1� z2(k�1)

Setting this equal to 0, we have

(j � 1)(k � 1) =
1� z2k�2

(1� z2)zk�2
=

1 + z2 + z4 + � � �+ z2k�4

zk�2

(j � 1)(k � 1) = 1 +

k�2
2X
i=1

�
z2i +

1

z2i

�
; for k even (A.10)

(j � 1)(k � 1) =

k�1
2X
i=1

�
z2i�1 +

1

z2i�1

�
; for k odd (A.11)

The functions on the right in Equations (A.10) and (A.11) are decreasing
in z for 0 < z < 1. Hence each equation can have at most one solution in
this range. Thus, dB=d� has at most one extremum and at most two zeros for
0 < � < 1

2 . Then B has at most two zeros besides B(0) = 0. But since B goes
positive as � increases from 0, two zero crossings for 0 < � < 1

2 would imply
B( 12 ) > 0. However, from Equation (A.4), using s = 0 at � = 1

2 ,

B( 12 ) =
h
(j � 1) ln 2� j

k
(k � 1) ln 2�

�
1� j

k

�
ln 2

i
< 0

Therefore, B(�) has exactly one zero for 0 < � < 1
2 .

4. If B(�) has a minimum within the range for which B(�) > 0, then it would
require a maximum on the either side of the minimum to satisfy B(0) = 0 and
B( 12 ) < 0. But B(�) has at most two extrema, so this is impossible.

Theorem A.2. For an (n; j; k) ensemble of codes, the minimum-distance dis-

tribution function may be bounded by5

Pr(D � n�) � k � 1

2nj�2
+ 0(n�j+2) + nC(�; n) exp�nB(�) (A.12)

Proof. From Equation (2.18), we have

Pr(D � n�) �
n�X
`=2

�
n

`

��j+1�
N1(`)

�j
5By 0(n�j+2) we mean a function that goes to zero with increasing n faster than n�j+2;

that is, a function f(n) such that limn!1 nj�2f(n) = 0.
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We can evaluate the term for ` = 2 directly. Recall that N1(2) is the number of
sequences of weight 2 which satisfy the �rst n=k parity-checks of any particular
code. There are

�
k
2

�
ways of arranging 2 ones in a single parity check set;

multiplying by the n=k parity-check sets, we have

N1(2) =
n

k

�
k

2

�
�
n

2

��j+1
N1(2)

j =
n(k � 1)j

2(n� 1)j�1
=

k � 1

2nj�2
+ 0(n�j+2)

Pr(D � n�) � k � 1

2nj�2
+ 0(n�j+2) +

n�X
`=4

C(�; n) exp�nB(�) (A.13)

where C(�; n) and B(�) are given in Equations (A.2) and (A.3). In order
to bound the terms for which ` is small in Equation (A.13), we note from
Equation (A.6) that as �! 0, s! 1

2 ln[�=(k�1)]. Using this value of s instead
of �0(s)=k = � in Equation (A.2), B(�) must be underbounded.

B(�) � (j � 1)
h
� ln

1

�
+ (1� �) ln

1

1� �

i
� j

k
ln
X
i even

�
k

i

�
esi +

j

2
� ln

�

k � 1

B(�) �
�j
2
� 1

�
� ln

1

�
� j

k
ln

1

1� �k2�e2s �
j

2
� ln(k � 1) (A.14)

Substituting `=n for � and using some inequalities, we have

exp�nB(�) � n�`
�
j
2�1

�
``
�
j
2�1

�
(k � 1)

j`
2 exp

�`j
2

�� 1

1� k`
2n

�
(A.15)

From Equation (A.3) we get

C(�; n) � (2�`)
j�1
2 exp

j � 1

6`
(A.16)

From Equations (A.15) and (A.16), we see that the terms for ` = 4 and ` = 6
in Equation (A.13) approach zero faster than n�j+2. From Theorem A.1, if
B(�) > 0, then for every term between ` = 8 and ` = n�, B(�) is lower bounded
by either B(8=n) or B(�). (If B(�) < 0, the right side of Equation (A.12) is
larger than 1 and the trivial bound of 1 applies.) Thus, the summation between
` = 8 and �n is bounded by

nCmax

h
exp�nB

� 8
n

�
+ exp�nB(�)

i
(A.17)

The �rst term of Equation (A.17) has an n dependence given by

n

�
1+

j�1
2 +8(� j

2+1)
�
= 0(n�j+2); for j � 3

The second term of Equation (A.17) is the last expression appearing in the
statement of the theorem, Equation (A.12), proving the theorem.
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Theorem A.3. Let �jk be the nonzero solution of B(�) = 0 for an (n; j; k)
ensemble, and let R = 1� j=k be �xed. Let �0 <

1
2 be the solution of H(�0) =

(1�R) ln 2. Then limk!1 �jk = �0.
From Theorem 2.2, �0 is the typical minimum-distance for the equiprobable

ensemble of parity-check codes, so the theorem asserts that the typical mini-

mum distance of (n; j; k) codes approach that of the equiprobable ensemble as k
increases.

Proof. Using Equation (A.2), B(�) can be rewritten in the form

B(�) =
n
�H(�) +

j

k
ln 2

o
+
n
j
�
H(�) + s�

�� j

k
ln
�
(1� es)k + (1 + es)k

�o
(A.18)

We shall show that for � 6= 0, the last brace in Equation (A.18) approaches 0
with increasing k. This is su�cient to prove the theorem, since j=k = 1 � R
and thus the �rst brace is zero only for � = �0.

H(�) + s� = �
h
ln
�1� �

�

�
+ s

i
� ln(1� �)

Making the substitution z = (1� es)=(1 + es) of Equations (A.7) and (A.8),

H(�) + s� =
1� z

2

1� zk�1

1 + zk
ln

1 + zk�1

1� zk�1
� ln

�1 + z

2

��1 + zk�1

1 + zk

�
(A.19)

Also

1

k
ln
�
(1 + es)k + (1� es)k

�
= ln(1 + es) +

1

k
ln(1 + zk)

= ln
2

1 + z
+

1

k
ln(1 + zk) (A.20)

Combining Equations (A.19) and (A.20), the second brace in Equation (A.18)
becomes

�j
�1� z

2

��1� zk�1

1 + zk

�
ln

1 + zk�1

1� zk�1
+ j ln

1 + zk�1

1 + zk
+
j

k
ln(1 + zk)

As k increases, for any z < 1, (where � > 0), zk and zk�1 approach 0. Expanding
the logarithms we have

�j
�1� z

2

��1� zk�1

1 + zk

�
2zk�1 + jzk�1(1� z) +

jzk

k

In this expression, j ! 1 linearly with k, but zk�1 ! 0 exponentially. Thus,
the second brace in Equation (A.18) approaches 0.
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B Miscellaneous Mathematical Derivations for

Chapter 3

B.1 Chernov Bounds

Theorem 3.1. Let Z =
Pn

i=1 zi be the sum of n independent random vari-

ables, let Pi(zi) be the probability density of the ith variable, and let gi(s) =R1
�1 exp(szi)Pi(zi) dzi be the moment generating function for the ith variable.

Then

Pr(Z � nz0) � exp(�nsz0)
nY
i=1

gi(s) (B.1)

for all s � 0 such that the gi(s) exist. If the zi are discrete, then the same

statement holds except that the Pi(zi) are probabilities and the integral de�ning

gi(s) is replaced by a sum.

Proof. The sum Z is itself a random variable, and has a probability distribution
function F (Z) and a moment-generating function,

G(s) =

Z 1

�1
exp(sZ) dF (Z) = exp(sZ) (B.2)

From the de�nition of Z, we get

G(s)exp
� nX
i=1

zi

�
=

nY
i=1

exp szi

Since the variables are independent,

G(s) =
nY
i=1

exp szi =
nY
i=1

gi(s) (B.3)

Now from Equations (B.2) and (B.3), we get

nY
i=1

gi(s) =

Z 1

�1
exp(sZ) dF (Z) �

Z 1

nz0

exp(sZ) dF (Z) (B.4)

For s � 0 and Z � nz0, sZ � sz0. Thus,

nY
i=1

gi(s) � exp(snz0)

Z 1

nz0

dF (Z) = exp(snz0) Pr(Z � nz0) (B.5)

Rearranging terms, we get the statement of the theorem, Equation (B.1). The
theorem is proven in exactly the same way if the zi are discrete.

72



It would appear from the rather gross inequalities in Equations (B.4) and
(B.5) that the bound in Equation (B.1) is rather poor. However, this is not so
if the parameter s is correctly chosen and if nz0 is greater than the mean value
of Z. To see this, consider the product F (Z)esZ . For larger n, F (Z) increases
sharply around �Z. However, esZ can be considered as a weighting factor that
weights large Z very heavily. Thus, the product F (Z)esZ will have a sharp rise
for some Z larger than �Z. The trick is to pick s to that this rise occurs at
Z = nz0. Analytically, this can be done by taking the partial derivatives with
respect to s of the right side of Equation (B.1) and setting it equal to 0, giving

nz0 =

nX
i=1

1

gi(s)

@gi(s)

@s
(B.6)

With the choice of s satisfying Equation (B.6), it can be shown that the bound
in Equation (B.1), known as the Chernov bound, at least has the correct expo-
nential dependence on n.

Theorem 3.2. Let zi and wi, 1 � i � n, be n pairs of random variables with

probability density functions Pi(zi; wi). Let the joint moment generating func-

tion of zi; wi, be

hi(r; t) =

ZZ
exp(rzi + twi)Pi(zi; wi) dzi dwi (B.7)

Let each pair of random variables be statistically independent of each other pair

and de�ne Z and W by

Z =

nX
i=1

zi

W =
X̀
i=1

wi

` � n

(B.8)

Then, for any arbitrary numbers z0 and w0,

P (Z � nz0; W � nw0) �
Ỳ
i=1

�
hi(r; t)

� nY
i=`+1

�
hi(r; 0)

�
exp�n(rz0 + tw0) (B.9)

for any r � 0, t � 0 for which hi(r; t) exists. If z and w are discrete, Equa-

tion (B.8) still holds with integrals in Equation (B.7) replaced by sums, and the

probability density replaced by a probability.

Proof. Let F (Z;W ) be the distribution function of Z;W and let the moment-
generating function of Z;W be

H(r; t) =

Z 1

�1

Z 1

�1
exp(rZ + tW ) dF (Z;W )

= exp(rZ + tW )

(B.10)
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Using Equation (B.8) and the independence of samples, we get

H(r; t) = exp
hX̀
i=1

(rzi + twi) +

nX
i=`+1

rzi

i

=

�Ỳ
i=1

exp(rzi + twi)

�� nY
i=`+1

exp rzi

�

=
Ỳ
i=1

hi(r; t)

nY
i=`+1

hi(r; 0) (B.11)

Combining Equations (B.10) and (B.11), we get

Ỳ
i=1

hi(r; t)

nY
i=`+1

hi(r; 0) =

Z 1

�1

Z 1

�1
exp(rZ + tW ) dF (Z;W )

�
Z nz0

Z=�1

Z nw0

W=�1
exp(rZ + tW ) dF (Z;W )

For r � 0, t � 0, Z � nz0, and W � nw0 we have

exp(rZ + tW ) � exp(rnz0 + tnw0)

Ỳ
i=1

hi(r; t)

nY
i=`+1

hi(r; 0) � exp(rnz0 + tnw0) Pr(Z � nz0; W � nw0)

Rearranging terms, we get the statement of the theorem, Equation (B.9).

B.2 Optimum Value of f(y)

We wish to �nd an expression for f(y) = f(�y) to maximize the expression

E(s; r; �) =
r

s� r
ln g(s)� s

s� r

�
B(�) + � lnh(r) + (1� �) ln g(r)

�
(B.12)

where

g(s) =

Z 1

�1
P0(y)

1�sf(y)s dy (B.13)

h(r) =

Z 1

�1
P0(y)

1
2 (1�r)P1(y)

1
2 (1�r)f(y)r dy (B.14)

If we write f(y) in the form f(y) = f0(y)+�f�(y), f0(y) will maximize E(s; r; �)
if E(s; r; �) is maximized with respect to � at � = 0 independent of f�(y). We
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can automatically satisfy the constraint f(y) = f(�y) is we rewrite the integrals
in Equations (B.13) and (B.14) as integrals from 0 to 1. Thus,

g(s) =

Z 1

0

h
P0(y)

1�s + P1(y)
1�s

i
[f0(y) + �f�(y)]

s dy (B.15)

h(r) =

Z 1

0

2P0(y)
1
2 (1�r)P1(y)

1
2 (1�r)[f0(y) + �f�(y)]

r dy (B.16)

Using Equations (B.15) and (B.16) we get

@E(s; r; �)

@�
=

rs

(s� r)g(s)

Z 1

0

�
P 1�s
0 + P 1�s

1

�
(f0 + �f�)

s�1f� dy

� s�r

(s� r)h(r)

Z 1

0

2P
1
2 (1�r)
0 P

1
2 (1�r)
1 (f0 + �f�)

r�1f� dy

� s(1� �)r

(s� r)g(r)

Z 1

0

�
P 1�r
0 + P 1�r

1

�
(f0 + �f�)

r�1f� dy (B.17)

If Equation B.17 is written out as one integral, it is clear that it will be 0 at
� = 0 independent of f�(y) only if the integrand is identically 0. Thus,

1

g(s)

�
P 1�s
0 + P 1�s

1

�
fs�10 � �

h(r)
2P

1
2 (1�r)
0 P

1
2 (1�r)
1 fr�10

� 1� �

g(r)

�
P 1�r
0 + P 1�r

1

�
fr�10 = 0 (B.18)

f0(y)
s�r =

�
h(r)

h
2P0(y)

1
2 (1�r)P1(y)

1
2 (1�r)

i
+ 1��

g(r)

h
P0(y)

1�r + P1(y)
1�r

i
1

g(s)

h
P0(y)1�s + P1(y)1�s

i
(B.19)

Finally, we observe that if an f0(y) satisfying Equation (B.19) is multiplied
by an arbitrary constant, it will still satisfy Equation (B.19) due to the com-
pensating changes in g(s), h(r) and g(r). Thus, with a little manipulation we
get Equation (3.40).

Next we show that this value of f0(y) yields a local maximum of E(s; r; �)
with respect to �.

@2E(s; r; �)

@�2
=

r

(s� r)g(s)2

�
g(s)

@2g(s)

@�2
�
h@g(s)

@�

i2�

� s�

(s� r)h(r)2

�
h(r)

@2h(r)

@�2
�
h@h(r)

@�

i2�

� s(1� �)

(s� r)g(r)2

�
g(r)

@2g(r)

@�2
�
h@g(r)

@�

i2�
(B.20)
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Consider the �rst brace in Equation (B.20):

g(s)
@2g(s)

@�2
�
h@g(s)

@�

i2����
�=0

= s(s� 1)

�Z 1

0

�
P 1�s
0 + P 1�s

1

�
fs0 dy

�

�
�Z 1

0

�
P 1�s
0 + P 1�s

1

�
fs�20 f2� dy

�

� s2
�Z 1

0

�
P 1�s
0 + P 1�s

1

�
fs�10 f� dy

�2

From the Schwartz inequality,

�Z 1

0

�
P 1�s
0 + P 1�s

1

�
fs�10 f� dy

�2
�
�Z 1

0

�
P 1�s
0 + P 1�s

1

�
fs0 dy

�

�
�Z 1

0

�
P 1�s
0 + P 1�s

1

�
fs�20 f2� dy

�

g(s)
@2g(s)

@�2
�
h@g(s)

@�

i2����
�=0

� �sg(s)
Z 1

0

�
P 1�s
0 + P 1�s

1

�
fs�20 f2� dy

In the same way, it can be shown that at � = 0,

h(r)
@2h(r)

@�2
�
h@h(r)

@�

i2
� �rh(r) 2

Z 1

0

P
1
2 (1�r)
0 P

1
2 (1�r)
1 fr�20 f2� dy

g(r)
@2g(r)

@�2
�
h@g(s)

@�

i2
� �rg(r)

Z 1

0

�
P 1�r
0 + P 1�r

1

�
fr�20 f2� dy

Combining these results and using the fact that s � 0, r � 0, we �nd

@2E(s; r; �)

@�2

����
�=0

� rs

s� r

Z 1

0

�
1

g(s)

�
P 1�s
0 + P 1�s

1

�
fs�20 f�

� �

h(r)
2P

1
2 (1�r)
0 P

1
2 (1�r)
1 fr�20 f2�

� 1� �

g(r)

�
P 1�r
0 + P 1�r

1

�
fr�20 f2�

�
dy (B.21)

Finally, comparing the integrand of Equation (B.21) with Equation (B.18),
we see that the integrand is identically 0. Thus,

@2E(s; r; �)

@�2

����
�=0

� 0

and we have established that Equation (3.40) yields a local maximum ofE(s; r; �)
with respect to f(y).
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B.3 Elimination of f(y) from Exponent

In this section, we simplify the expression forE(s; r; �) given in Equations (B.12),
(B.13) and (B.14) by eliminating f(y) from Equations (B.13) and (B.14) by us-
ing Equation (3.41) (repeated here as Equation (B.22) for convenience).

f(y) =

�
P0(y)

1
2 (1�r) + P1(y)

1
2 (1�r)

� 2
s�r

�
P0(y)

1�s + P1(y)
1�s

�� 1
s�r

(B.22)

First we add and subtract s=(s� r) ln[g(r) + h(r)] from Equation (B.12). This
gives us

E(s; r; �) =
r

s� r
ln g(s)

� s

s� r

�
B(�) + � ln�+ (1� �) ln(1� �) + ln[g(r) + h(r)]

	
(B.23)

� = ln
h(r)

g(r) + h(r)
(B.24)

Writing out g(s) and g(r) + h(r) by using Equation (B.22), we get

g(s) = g(r) + h(r)

=

Z 1

0

�
P0(y)

1�s + P1(y)
1�s�� r

s�r
�
P0(y)

1
2 (1�r) + P1(y)

1
2 (1�r)

� 2s
s�r (B.25)

Substituting Equation (B.25) into Equation (B.23), and writing out the ex-
pression for �, we get Equations (3.43), (3.44), and (3.45).

B.4 Simpli�cation of Exponent for Random Ensemble of

Parity-Check Codes

Equation (3.47) shows that �(�) = (1 � R) ln 2, which is independent of � in
this case. Thus the expression for E(s; r), Equation (3.43), is independent of �
and can be written

E(s; r) =
s

s� r
(1�R) ln 2

� ln

Z �
P 1�s
0 + P 1�s

1

�� r
s�r
�
P

1
2 (1�r)
0 + P

1
2 (1�r)
1

� 2s
s�r dy (B.26)

If we now make the substitutions � = s=(s� r), �1 = 1� s, �2 =
1
2 (1� r), we

get

E1(�1; �) = �(1�R) ln 2� ln

Z �
P �1
0 + P �1

1

�1���
P �2
0 + P �2

1

�2�
dy (B.27)
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where

�2 =
1� �1(1� �)

2�

Next we �nd the maximum of E1(�1; �) over �1. De�ne

z(�1; y) =
�
P0(y)

��1
+
�
P1(y)

��1
E1(�1; �) = �(1�R) ln 2� ln

Z
z(�1; y)

1��z(�2; y)
2� dy

@E1(�1; �)

@�1

=

�
Z 1

0

z(�1; y)
1��z(�2; y)

2�
h (1� �)z01(�1; y)

z(�1; y)
� 2�z01(�2; y)(1� �)

z(�2; y)2�

i
dyZ 1

0

z(�1; y)
1��z(�2; y)

2� dy

(B.28)

The partial derivate in Equation (B.28) was taken with � constant but �2
varying with �1 according to Equation (B.27). It is clear from the bracketed
term in Equation (B.28) that E1(�1; �) has a stationary point at �1 = �2, or
1� s = 1

2 (1� r).
In order to show that �1 = �2 actually maximizes E1(�1; �), it is su�cient

to show that Equation (B.28) is nonnegative for �1 < �2 and nonpositive for
�1 > �2. Since the sign of Equation (B.28) is determined only by the bracketed
term, however, is it su�cient to show that

@

@�1

��z01(�1; y)
z(�1; y)

+
z01(�2; y)

z(�2; y)

�
� 0 (B.29)

Or,

� z001 (�1; y)z(�1; y)� [z01(�1; y)]
2

[z(�1; y)]2

+
z001 (�2; y)z(�2; y)� [z01(�2; y)]

2

[z(�2; y)]2

h
� (1� �)

2�

i
� 0

Writing out the �rst term, we get

�
�
P �1
0 (lnP0)

2 + P �1
1 (lnP1)

2
��
P �1
0 + P �1

1

�� �P �1
0 lnP0 + P �1

1 lnP1
�2

[z(�1; y)]2

From the Schwartz inequality, the second part of this expression is less than
or equal to the �rst, so the whole term is negative. In the same way, the second
term is negative, establishing that 1�s = (1�r)=2 yields a maximum of E(s; r).
Substituting this into Equation (B.26), we get

E(s) =
s

1� s
(1�R) ln 2� ln

Z 1

0

�
P 1�s
0 + P 1�s

1

�1=(1�s)
dy (B.30)
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B.5 General BSC

In order to maximize Equation (3.61) over s and r, and thereby minimize our
upper bound to �Pe for the BSC, we could simply combine Equations (3.61),
(3.62), and (3.63), and then set the partial derivatives with respect to s, r, and
� equal to 0. This procedure is tedious, and it is di�cult to demonstrate that
the stationary point so found is indeed the maximum over s, r of the minimum
over �. However, we recall that Equations (3.61) to (3.64) were derived by
eliminating f(y) from Equation (3.37).

For the BSC, it makes no di�erence what f(y) is. Due to the symmetry
condition, Equation (3.5), f(+1) = f(�1), and thus f(y) is speci�ed by one
value. However, we showed that multiplying f(y) by a constant does not change
E, so that f(y) can be chosen as 1 for the BSC. At this point, we can return to
Equation (3.37) and minimize this directly. We have, letting p = P0(�1)

�Pe � max
�

min
s;r;d

n
expn[ln g(s)� sd]

+ nCn expn
�
B(�) + � ln h(r) + (1� �) ln g(r) � rd

�o
(B.31)

g(s) = p1�s + (1� p)1�s

h(r) = 2p
1�r
2 (1� p)

1�r
2

(B.32)

To minimize Equation (B.31) over s, we can simply minimize [ln g(s)� sd]

d =
p1�s ln(1=p) + (1� p)1�s ln[1=(1� p)]

p1�s + (1� p)1�s
(B.33)

if d is in the proper range to make 0 � s <1.
To see that Equation (B.33) actually minimizes �Pe, we can show that

@2[ln g(s)� sd]

@s2
� 0 (B.34)

This can be done either by straightforward but tedious di�erentiation or by re-
calling that the second derivative of a semi-invariant generating function [ln g(s)]
is always positive [4]. Likewise, minimizing over r gives us

d =
��
2
p(1� p) + (1� �)

p1�r ln(1=p) + (1� p)1�r ln[1=(1� p)]

p1�r + (1� p)1�r
(B.35)

if d is in the proper range to make �1 < r � 0. Finally we can minimize over
d by making the two exponents equal.

ln
�
p1�s + (1� p)1�s

�� sd

= B(�) + � ln 2 +
�(1� r)

2
ln p(1� p) + (1� �) ln

�
p1�r + (1� p)1�r

�� rd

(B.36)
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Equations (B.34), (B.35) and (B.36) can be used in principle to solve for s,
r, and d in terms of � if a solution exists with 0 � s < 1; �1 < r � 0. To
simplify these equations, �rst combine Equations (B.33) and (B.35) to eliminate
d.

�ps ln p� (1� ps) ln(1� p) = ��
2
ln p(1� p)� (1� �)

�
pr ln p+ (1� pr) ln(1� p)

�
(B.37)

where

ps =
p1�s

p1�s + (1� p)1�s

pr =
p1�r

p1�r + (1� p)1�r

pr � p � ps

(B.38)

The third condition in Equation (B.38) is required by the condition s � 0, r � 0.
Rearranging Equation (B.37), we get�
�ps + �

2
+ (1� �)pr

�
ln p =

h
(1� ps)� �

2
� (1� �)(1� pr)

i
ln(1� p)

=
h
�ps + �

2
+ (1� �)pr

i
ln(1� p)

ps =
�

2
+ (1� �)pr (B.39)

Equation (B.36) can also be simpli�ed if we add d to each side, then substi-
tute Equation (B.34) in the left side of Equation (B.36), and substitute Equa-
tion (B.35) in the right side of Equation (B.36). After some simpli�cation, this
yields

H(ps) = B(�) + � ln 2 + (1� �)H(pr) (B.40)

Also, since we have set the exponents in Equation (B.31) equal, we can simplify
the expression for �Pe. Proceeding in the way used to get Equation (B.40), we
obtain

�Pe � max
�

(1 + nCn) exp�n
h
�H(ps) + ps ln

1

p
+ (1� ps) ln

1

1� p

i
(B.41)

where ps satis�es Equations (B.39) and (B.40) and pr � p � ps.
Note from Figure 3.4 that the �Pe in Equation (B.41) is decreasing with ps,

so that maximizing � means to �nd the � for which the ps satisfying Equa-
tions (B.39) and (B.40) is minimized. A simpler formulation for this � can be
found from Equation (B.31), from which � is chosen to maximizeh

B(�) + � ln
h(r)

g(r)

i
= B(�) +

�

2
ln 4pr(1� pr) (B.42)
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C Analysis of Number of Independent Decoding

Iterations

An asymptotic bound on the probability of decoding error using probabilistic
decoding was developed in Chapter 4, Equation (4.19). This bound was given
as a function of the number of decoding iterations. In this appendix, upper and
lower bounds will be derived on the maximum number of decoding iterations m
that can be achieved with an (n; j; k) code before the independence assumption
of Theorem 4.1 becomes invalid. We shall show �rst that for any (n; j; k) code
m must be upper bounded by

m <
logn

log(k � 1)(j � 1)
(C.1)

Second, and more important, a construction procedure will be described by
which it is always possible to �nd an (n; j; k) code satisfying

m+ 1 >
logn+ log kj�k�j

2k

2 log(k � 1)(j � 1)
� m (C.2)

Note that for large n, the m given by Equation (C.2) is approximately half that
given by Equation (C.1).

Theorem C.1. Let m be the largest number of independent decoding iterations

possible for any code of block length n with k digits per parity-check and j parity-
check sets per digit. Then

m <
logn

log(k � 1)(j � 1)

Proof. Consider an m-tier parity-check set tree for any digit in any (n; j; k)
code. To achieve m independent decoding iterations, each node of this tree
must correspond to a separate digit in this code. Thus, the number of nodes
in the m-tier tree must be at most equal to the block length n. The �rst tier
contains (k � 1) nodes for each of the j branches rising from the base node.
Thus, the �rst tier contains j(k � 1) digits. Each of these digits gives rise to
(j�1)(k�1) digits on the second tier since only (j�1) branches rise from each
node on the �rst tier. Thus, there are j(j � 1)(k� 1)2 digits on the second tier.
Similarly, there are j(j � 1)i�1(k � 1)i digits on the ith tier. Thus,

1 + j(k � 1) + j(j � 1)(k � 1)2 + � � �+ j(j � 1)i�1(k � 1)i

+ j(j � 1)m�1(k � 1)m � n (C.3)

The expression on the left of Equation (C.3) is lower bounded by its last term,
and that in turn is lower bounded by (j � 1)m(k � 1)m, hence

(j � 1)m(k � 1)m < n (C.4)

Taking the logarithm of both sides of Equation (C.4), we get Equation (C.1),
proving the theorem.
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Equation (C.3) can also be summed exactly to get

1 + j(j � 1)m�1(k � 1)m
h1� (j � 1)�m(k � 1)�m

1� (j � 1)�1(k � 1)�1

i
� n (C.5)

The complexity of Equation (C.5), however, makes it less useful than Equa-
tion (C.1).

Before describing a construction procedure to satisfy Equation (C.2), a re-
lationship will be established between m and the relative locations of the 1's in
the parity-check matrix. De�ne a closed path in parity-check matrix to be a se-
quence of connected alternating horizontal and vertical lines with the following
properties: First, the last line in the sequence terminates at the beginning of
the �rst line; second, each vertex is at a point where the parity-check matrix
contains a 1. A vertex is here de�ned as a connection point between succes-
sive lines in the sequence, including that between the last and �rst lines (see
Figure C.1). De�ne the length of a closed path as the number of lines in the

Figure C.1: Example of closed path of length 6. Blanks = 0's; slashes = 1's.

sequence. For example, the closed path in Figure C.1 has length 6. Note that
a horizontal or vertical line can pass through other lines and other ones in the
matrix and is still counted as one line. We allow the sequence of lines associated
with a closed path to start with any line in the path and go in either direction.

Lemma C.1. If one or more closed path of length L exists in a parity-check

matrix and no closed path of length less than L exists, then m, the number of

independent decoding iterations, satis�es

m <
L

4
� m+ 1 (C.6)

Proof of First Half of Inequality. Consider a particular closed path of length L.
There are L=2 vertical lines in this path, each corresponding to a digit in the
code. Call these digits, in order of their appearance along the closed path a1,
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a2, : : : , aL=2. For the closed path shown in Figure C.1, we could have a1 = 1,
a2 = 6, and a3 = 13. Consider the parity-check set tree associated with digit
aL=2 (see Figure C.2), and consider the two paths in this tree formed by aL=2,

1

1

3 4 6

6

78

11 11

13

16 16

18 19 20

Figure C.2: Closed path of Figure C.1 in a parity-check set tree.

a(L=2)�1, : : : , aL=4 (or a(L=4)+1=2) and aL=2, a1, a2, : : : , aL=4 (or a(L=4)+1=2).
Note that aL=2 appears on tier 0; a1 and a(L=2)�1 on tier 1, and in general ai
and a(L=2)�i on tier i. If L=4 is an integer, then aL=4 must appear twice on the

L=4th tier and thus m < L=4. Alternatively, if (L=4) + 1=2 is an integer, then

a(L=4)+1=2 appears once on the (L=4) � 1
2

th
tier and once on the (L=4) + 1

2

th

tier. In this case, m � L=4� 1
2 < L=4, completing the proof that m < L=4.

Proof of Second Half of Inequality. If a code has only m independent decoding
iterations, then for some digit in the code, say d, the parity-check set tree
contains a digit on tier m+1, say a0, that has appeared elsewhere either on tier
m + 1 or on a lower tier. Now let a1 and b1 be the digits immediately below
the two appearances of a0 on the parity-check set tree; let a2 and b2 be the
digits underneath them, and so forth down to digit d. The number of digits in
the set a0, d, a1, : : : , b1, : : : ; is at most 2(m+ 1). Finally, consider drawing a
closed path in the parity-check matrix starting with a0 and the parity check set
containing a1 and a2, and so on down to digit d and back up to a0 via the b's.
This closed path contains twice as many lines as digits, so that L � 4(m + 1)
proving the theorem.

A procedure will now be described for constructing parity-check matrices
with no closed paths of length L = 4m or less. The procedure will be followed
by a proof the that construction can be carried out whenever Equation (C.2)
is satis�ed. Consider and nj=k by n matrix such as in Figure C.3. The matrix
has been divided into jk square submatrices, each with n=k rows and columns.
The �rst row of submatrices and the �rst column of submatrices are all identity
matrices. The other submatrices contain the letter U in each position on the
main diagonal and the letter A in each position o� the main diagonal. Our
object is to replace each submatrix containing A's and U 's with permutations
of the n=k by n=k identity matrix in such a way as to form no closed paths
of length 4m or less. The letter A is used to denote an acceptable position
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Figure C.3: Initial stage of construction procedure.

in which to place a 1 without forming any closed paths of length 4m or less.
The letter U denotes an unacceptable position; these are positions in which a 1
would create a closed path of length 4m or less. Note that even for m = 1, the
main diagonals contain U 's because of the closed paths of length 4 such as that
shown by the dotted line in Figure C.3.

Next pick a submatrix containing A's and U 's, and in the �rst row, select
some position containing an A and replace that A with a 1. Also place a 0 in
front of each letter in the submatrix that is in the same row or column as that
1. Finally, for those positions in the matrix in which 1's can no longer be placed
without creating a closed path of length 4m or less, replace the A with a U .
This yields a matrix such as that in Figure C.4

Continue with row 2 of the submatrix, replacing some position containing
an A (not 0A) with a 1, �lling in that row and column by 0's and changing A's
to U 's when necessary. Continue in this way until each row of the submatrix
contains a 1 and go through each submatrix in this way. If, at some point in this
process, a row is encountered, say the `th, in which no position contains an A
without an accompanying 0, go through the following \emergency" procedure.

Let c` be a column in which row ` contains a U . Denote this by P (`; c`) = U ,
where P (i; j) is de�ned as the symbol appearing in the ith row of the jth column
of the submatrix. For each i < `, de�ne ci as the column for which P (i; ci) = 1.
Now �nd an i for which P (i; c`) = 0A and P (`; ci) = 0A (see the circled entries
in Figure C.5.) For this i, change P (i; c`) to 1, P (`; ci) to 1, P (i; ci) to 0A and
modify the A's U 's and 0A's throughout the matrix to correspond to this new
set of 1's.

For this emergency procedure to work, it is necessary �rst to prove that mak-
ing both P (i; ci) = 1 and P (`; c`) = 1 simultaneously does not form any closed
path of length 4m or less. Also, it is necessary to prove that if Equation (C.2)
is satis�ed, then an i always exists such that P (i; c`) = 0A and P (`; ci) = 0A.
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Figure C.4: Second step in matrix construction.

The �rst point will be proved by contradiction. Assume that setting P (i; ci) =
1, P (`; c`) = 1, and P (i; ci) = 0 forms a closed path of length 4m or less. This
path must contain both points i; c` and `; ci as vertices, since the 0A's formerly
in these positions indicated that no closed path of length 4m or less existed
through either point alone. Consider tracing round this closed path starting at
`; ci along the horizontal line. There are two cases to be considered: First, the
path comes to i; c` along a horizontal line as in Figure C.6; second, the path
comes to i; c` along a vertical line as in Figure C.7.

For case 1, set P (i; c`) = 0, P (i; ci) = 1, and terminate the horizontal line
coming into i; c` on point i; ci, as in Figure C.6. Then close the path by moving
vertically to `; ci. This path has a length less than 4m since it is shorter than
the original path. However, this contradicts the assumption that `; ci was an
acceptable point when P (i; ci) was equal to 1.

For case 2, set P (i; c`) = 0, P (`; ci) = 0, and P (i; ci) = 1. Now make the
vertical line previously terminating on `; ci terminate on i; ci, and the horizontal
line previously originating on i; c` originate on i; ci (see Figure C.7). This forms
a closed path of length less than 4m involving neither i; c` nor `; ci. This is also
a contradiction since no 1's are placed in the matrix in such a way as to form
a closed path of length 4m or less. This completes the proof that P (`; ci) and
P (i; c`) may simultaneously be set equal to 1 if they are both labelled 0A.

To complete the proof, we must show that if Equation (C.2) is satis�ed, it is
always possible in this emergency condition to �nd an i such that P (`; ci) = 0A
and P (i; c`) = 0A. First, we shall show that Equation (C.2) implies that there
are no more than n=2k values of i for which P (`; ci) = 0A. Second, we shall
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Figure C.5: Example of emergency procedure in matrix construction.

ici

`ci

ic`

Figure C.6: Case 1: Closed path through `ci and ic`.

show that more than n=2k elements in column c` of the submatrix contain 0A's.
These two relations will complete the proof since if P (i; c`) 6= 0A for all i for
which P (`; ci) = 0A, then column c` will contain more than n=2k non-0A's and
more than n=2k 0A's. But this is impossible since column ` of the submatrix
contains only n=k elements. Thus, there must be an i for which P (i; c`) = 0A
and P (`; ci) = 0A.

We now bound the number of points in row ` that can be labelled U . If a
point in the `th row of the submatrix is unacceptable, then a 1 placed at that
point would cause a closed path of length 4m or less. We shall consider the
�rst line of that closed path to be the horizontal line on row ` originating at
the unacceptable point. The last line will then be the vertical line terminating
at the unacceptable point. We �rst ask how many closed paths of length 4 can
exist starting at an unacceptable point in row ` of the submatrix. There are
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ici

`ci

ic`

Figure C.7: Case 2: Closed path through `ci and ic`.

at most (k � 1) points where this �rst horizontal line can terminate, namely,
those positions in row ` of the complete matrix in which ones have already been
placed. The vertical line from any one of these (k�1) points can terminate in at
most (j�1) points, namely the other positions in the column in which ones have
been placed. Remember that in this construction we never placed more than k
1's in a row or over j 1's in a column. Finally, if a closed path of length 4 is to
be constructed, the next horizontal line from any of these (j � 1) points must
terminate in a column contained in the submatrix under consideration, and there
is at most a single 1 in any of those columns on which that horizontal like can
terminate. Thus there are at most (k�1)(j�1) di�erent closed paths of length 4
that can have an unacceptable point in row ` of the given submatrix as a vertex.
Consequently, at most (k� 1)(j � 1) points in row ` of the given submatrix are
unacceptable because of closed paths of length 4. The same argument can be
used on closed paths of length 6. Here, for any of the (k � 1)(j � 1) paths of
length 2, there are at most k�1 points on which the third line can terminate, and
for each of these, at most (j� 1) points on which the fourth line can terminate.
The �fth line is now determined since it must terminate in a column of the given
submatrix. Hence at most (k�1)2(j�1)2 points in row ` of the given submatrix
are unacceptable because of closed paths of length 6. Similarly, closed paths of
length 2i can make at most (k� 1)i�1(j� 1)i�1 points unacceptable. Thus, the
total number of unacceptable points in row ` of the submatrix Nu is bounded
by

Nu �
2mX
i=2

(k � 1)i�1(j � 1)i�1

= (k � 1)2m�1(j � 1)2m�1
�
1� [(k � 1)(j � 1)]�(2m�1)

1� [(k � 1)(j � 1)]�1

�

<
(k � 1)2m�1(j � 1)2m�1

1� [(k � 1)(j � 1)]�1

=
[(k � 1)(j � 1)]2m

kj � k � j
(C.7)
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Thus Nu � n=2k if
[(k � 1)(j � 1)]2m

kj � k � j
� n

2k

or

m � logn+ log kj�k�j
2k

2 log(k � 1)(j � 1)

Since all the elements in row ` of the given submatrix are either 0A or U ,
Equation (C.2) implies that more than n=2k of the elements in row ` are 0A's.

Finally, we must show that more than n=2k elements in column c` of the
submatrix are labelled 0A. The argument is identical to that last argument with
the exception that instead of constructing paths starting with horizontal lines
from the unacceptable digit, we start with a vertical line. Equation (C.7) still
gives a bound on the number of unacceptable points, and Equation (C.2) still
guarantees that over n=2k points are labelled 0A since all the elements in column
c` are 0U 's or 0A's. Thus, we have demonstrated a constructive procedure for
generating codes in which m independent decoding iterations can be performed
where m satis�es Equation (C.2).
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