
EE/Ma 127c Error-Correcting Codes
draft of April 25, 2001

R. J. McEliece
162 Moore

The Forward–Backward Algorithm

Introduction.

In these notes I will present my somewhat idiosyncratic view of the famous forward-
backward algorithm. The presentation will for now be restricted to a bare description
of the simple mathematical underpinnings, with no discussion of the many possible gen-
eralizations and applications. In essense, the idea is simply this: If we have a set of
N elements of a noncommutative ring, say x1, . . . , xN , and are asked to compute the N
products of the form

Xi =
N∏
j=1
j �=i

xj , for i = 1, 2, . . . , N

it is a good idea to first compute (recursively) the “forward” and “backward” partial
products

αi = x1 · · ·xi for i = 0, . . . , N
βj = xj+1 · · ·xN for j = 0, . . . , N

and then use the relationship

Xi = αi−1βi for i = 1, 2, . . . , N .

it is easy to see that this simple trick reduces the number of multiplications required to
compute X1, . . . , XN from O(N2) to O(N).

It will be good to keep this basic idea in mind as we go through the formalities. We
begin in the next section with a desription of the basic problem solved by the FBA, which
involves the notion of a weighted trellis.

1

V
1

V
2

V
3

V
4

V
0

V
5

A B
b

c

d

e

f

g

h

j

k

m

Figure 1. A trellis of rank 5.

1. The Underlying Problems.

A trellis is a special kind of directed graph, like the one illustrated in Figure 1. The
vertices are sorted according to rank, and the set of vertices of rank i is denoted by Vi, for
i = 0, 1, . . . , N . The number N is caled the rank of the trellis. The number of vertices of
rank i is denoted by qi. There is a single vertex of rank 0 caled the source, and denoted
by A, and a single vertex of rank N , called the sink, and denoted by B. The only allowed
(directed) edges are between vertices whose rank differs by 1, and the set of edges joining
vertices of rank i− 1 to those of rank i is denoted by Ei−1,i. The initial vertex of an edge
e is denoted by init(e), and the final vertex of e is denoted by fin(e). For example, In
Figure 1 we see a trellis with N = 5 and q0 = 1, q1 = 2, q2 = 3, q3 = 3, q4 = 2, and q5 = 1.
Also, V0 = {A}, V1 = {b, c}, E0,1 = {(A, b), (A, c)}, etc.

A path P in a trellis is a set of connected edges: P = e1e2 . . . ek, with fin(e1) =
init(e2), . . . ,fin(ek−1) = init(ek). The number of edges in P is called the length of P . If a
path P = e1e2 · · · ek has initial vertex u = init(e1) and final vertex v = fin(ek), we write

P : u �→ v.

If in addition the path P passes through the vertex w, we write

P : u w�→ v.

Finally, if the path P contains the edge e, we write

P : u e�→ v.

Next, we suppose that each edge e in the trellis is assigned a weight w(e), which for
now we assume is a real number.

2

V
1

V
2

V
3

V
4

V
0

V
5

A B
b

c

d

e

f

g

h

j

k

m

1

2

3

1

2

4

1

2

3
1
2

1

2

3

1

1

1

3

3

Figure 2. Weights assigned to the trellis of Figure 1.

For example, in Figure 2 we see the trellis of Figure 1 with a weight associated with each
edge. If P = e1e2 · · · ek is a path of length k in T , its weight is defined as the product of
the weights of the component edges:

w(P) = w(e1)w(e2) · · ·w(ek).

The fundamental quantities computed by the FBA are the flows, defined as follows.

Definitions. If u and v are vertices in a trellis, the flow from u to v, denoted µ(u, v), is
defined as the sum of the weights of all paths from u to v:

µ(u, v) =
∑

P :u �→v
w(P).

(If there are no such paths, µ(u, v) is defined to be zero.) Similarly, if u, x, and v are
vertices in T , the flow from u to v through x is defined as

µx(u, v) =
∑

P :u
x�→v

w(P).

Finally, u and v are vertices and e is an edge, the flow from u to v through e is defined as

µe(u, v) =
∑

P :u
e�→v

w(P).

The following simple result is one of the great secrets of the FBA. It shows how to use
the humble distributuve law to greatly simplify the calculation of the constrained flows
µx(u, v) and µe(u, v).

3

Theorem 1 . We have

(1) µx(u, v) = µ(u, x)µ(x, v).

Similarly, if init(e) = x and fin(e) = y,

(2) µe(u, v) = µ(u, x) · w(e) · µ(y, v).

Proof: We will prove (1), leaving (2) as an exercise.

Suppose there are m paths from u to x, say P1, . . . , Pm, and n paths from x to v, say
Q1, . . . , Qn. Then there are exactly mn paths from u to v through x, namely paths of the
form Pi ∗Qj , where “∗” denotes concatenation. Then we have

µx(u, v) =
∑

P :u
x�→v

w(P)

=
m∑
i=1

n∑
j=1

w(Pi ∗Qj)

=
m∑
i=1

n∑
j=1

w(Pi)w(Qj)

=

(∑
i=1

w(Pi)

)
 n∑
j=1

w(Qj)


 (The distributive law)

= µ(u, x)µ(x, v).

The forward-backward algorithm (FBA) addresses the following three problems.

Problem 1. Compute the flow from A to B, i.e.,

µ(A,B) =
∑

P :A �→B
w(P).

Since there may be as many as q1q2 · · · qN−1 paths from A to B, the computation of
µ(A,B) appears to be a formidable task. However, as we shall see, the FBA computes this
flow using at most 2(q0q1 + q1q2 + · · ·+ qN−1qN) arithmetic operations.

Problem 2. For each vertex v, compute the flow from A to B through v, i.e.,

µv(A,B) =
∑

P :A
v�→B

w(P).

4

Note that we have ∑
v∈Vi

µv(A,B) = µ(A,B),

since each path from A to B must pass through exactly one of the vertices in Vi. Thus
the ratio µv(A,B)/µ(A,B) can be interpreted as a kind of probability that a randomly
selected path from A to B passes through v.

Problem 3. For each edge e, compute the flow from A to B through e, i.e.,

µe(A,B) =
∑

P :A
e�→B

w(P).

Note that we have ∑
e∈Ei−1,i

µe(A,B) = µ(A,B),

since each path from A to B must traverse exactly one of the edges in Ei−1,i. Thus the
ratio µe(A,B)/µ(A,B) can be interpreted as the probability that a randomly selected path
from A to B traverses the edge e.

5

2. The Forward and Backward Recursions.

For each i = 1, 2, . . . N , define a qi−1×qi matrix Wi, whose rows are indexed by the vertices
in Vi−1 and columns are indexed by the vertices in Vi:

Wi(u, v) =
{
w(e) if there is an edge e joining u to v
0 otherwise.

For example, the Wi’s associated with the weighted trellis of Figure 2 are as follows:

W1 =
(b c

A 1 2
)

W2 =

(d e f

b 3 0 1
c 2 4 0

)

W3 =




g h j

d 0 1 2
e 3 1 2
f 0 1 3




W4 =




k m

g 2 0
h 3 1
j 0 1




W5 =

(B

k 1
m 3

)

The heart of the forward-backward algorithm is the recursive computation of certain
“forward” vectors αi, for i = 0, 1, . . . , N and “backward” vectors βi, for i = N,N−1, . . . , 0.
Here αi is a row vector of dimension qi, and βi is a column vector of dimension qi. Both
αi and βi have components indexed by Vi. If v ∈ Vi, we will denote the vth component of
αi (resp. βi) by αi(v) (resp. βi(v)).

The αi’s are defined by the following forward recursion:

(3) α0 = 1, αi = αi−1Wi, for i = 1, . . . , N .

and the βi’s are defined by a corresponding backward recursion:

(4) βN = 1, βi = Wi+1βi+1, for i = N − 1, N − 2, . . . , 0.

6

Clearly we have

αi = W1W2 · · ·Wi, for i = 1, . . . , N .(5)
βi = Wi+1Wi+2 · · ·WN , for i = N − 1, N − 2, . . . , 0.(6)

For example, for the weighted trellis shown in Figure 2, we have

α0 = (1)
α1 = α0W1 = (1 2)
α2 = α1W2 = (7 81 1)
α3 = α2W3 = (24 16 33)
α4 = α3W4 = (96 49)
α5 = α4W5 = (243)

and
β5 = (1)

β4 = W5β5 = (1 3)T

β3 = W4β4 = (2 6 3)T

β2 = W3β3 = (12 18 15)T

β1 = W2β2 = (51 96)T

β0 = W1β1 = (243)

(An alternative definition of the αis and βis, which is based on geometry rather than
algebra:

αi(u) =
∑

e∈Ei−1,i
fin(e)=u

αi−1(init(e)) · w(e).

and
βi(u) =

∑
e∈Ei,i+1
init(e)=u

w(e) · βi+1(fin(e)).

These definitions give a direct way to benefit from the sparseness of the trellis,, and can
be used to show that the arithmetic complexity of computing the αi’s and βi’s is O(|E|),
where E is the total number of edges in the trellis.)

The key property of the α’s and the β’s is contained in the following Theorem.

Theorem 2 . For any u ∈ Vi, we have

(7) αi(u) = µ(A, u).

7

Similarly, for any v ∈ Vi, we have

(8) βi(v) = µ(v,B).

Proof: We will prove (7); the proof of (8) follows by taking mirror images.

We prove (7) by induction on i. The case i = 1 says that

α1(u) = µ(A, u).

But α1 = W1 by (3), and W1(A, u) is by definition the weight of the edge (if any) between
A and u. So (7) is correct for i = 1.

Assuming the truth of (7) for i, we proceed as follows. Let u ∈ Vi+1. Then

µ(A, u) =
∑
x∈Vi

µx(A, u) (conservation of flow)

=
∑
x∈Vi

µ(A, x)µ(x, u) (Lemma 1)

=
∑
x∈Vi

αi(x)Wi+1(x, u) (induction hypothesis and definiton of Wi+1)

= αi+1(u) (definition of αi+1)

8

3. The Solutions.

Theorem 3 . (Solution to Problem 1.) For any i = 0, 1, . . . , N , we have

µ(A,B) = αiβi.

In particular, µ(A,B) = αN = β0.

Thus for example,

µ(A,B) = β0 = α0β0 = α1β0 = α2β2 = α3β3 = α4β4 = α5β5 = α5 = 243.

In short, in Figure 2, the flow from A to B is 243.

Proof: For any index i we have

µ(A,B) =
∑
x∈Vi

µx(A,B) (conservation of flow)

=
∑
x∈Vi

µ(A, x)µ(x,B) (Lemma 1)

∑
x∈Vi

αi(x)βi(x) (Theorem 2)

= αiβi.

Corollary. We have

µ(A,B) = W1W2 · · ·WN .

Thus computing flows is equivalent to matrix multiplication!

Proof: We have from (5) and (6):

αi = W1 · · ·Wi, βi = Wi+1 · · ·WN ,

and hence αiβi = W1W2 · · ·Wn. The result now follows from Theorem 3.

Theorem 4 . (Solution to Problem 2.) If v ∈ Vi, we have

µv(A,B) = αi(v)βi(v).

9

Thus if we use the notation 〈x,y〉 = (x1y1, . . . , xnyn), the vertex-constrained flows
through the vertices in Vi are the cmponents of the vector 〈αi,βi〉. In the weighted trellis
of Figure 2, for example, we have

〈α0,β0〉 =
(A

243
)

〈α1,β1〉 =
(b c

51 192
)

〈α2,β2〉 =
(d e f

84 144 15
)

〈α3,β3〉 =
(g h j

48 96 99
)

〈α4,β4〉 =
(k m

96 147
)

〈α5,β5〉 =
(B

243
)

For example, the flow from A to B through vertex h is 96.

Proof: We have

µv(A,B) = µ(A, v)µ(v,B) (Lemma 1)
= αi(v)βi(v) (Theorem 2)

Theorem 5 . (Solution to Problem 3.) If init(e) = u ∈ Vi−1 and fin(e) = v ∈ Vi, we have

µe(A,B) = αi−1(u) · w(e) · βi(v).

Thus if we use the notation 〈αWβ〉(u,v) = α(u)W (u, v)β(v), the edge-constrained flows
through the edges in Ei−1,i are given by the entries in the matrix 〈αi−1Wiβi〉. In the

10

trellis of Figure 2, for example, we have

〈α0W1β1〉 =
(b c

A 51 192
)

〈α1W2β2〉 =

(d e f

b 36 0 15
c 48 144 0

)

〈α2W3β3〉 =




g h j

d 0 42 42
e 48 48 48
f 0 6 9




〈α3W4β4〉 =




k m

g 48 0
h 48 48
j 0 99




〈α4W5β5〉 =

(B

k 96
m 147

)

For example, the flow from A to B through the edge e→ h is 48.

Proof: We have

µe(A,B) = µ(A, u) · w(e) · µ(v,B) (Lemma 1)
= αi−1(u) · w(e) · βi(v). (Theorem 2)

References.

1. L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, Optimal decoding of linear codes for
minimizing symbol error rate. IEEE Trans. Inform. Theory, vol. IT-20 (1974), pp. 284–
287.

11

