Details of Class Project \#2
Due date: To be announced

You (and/or your team; maximum of four students per team) are expected to produce a computer program to implement the Viterbi decoding algorithm for the Voyager code, i.e., the $(2,1,6,10)$ binary convolutional code with generator matrix

$$
\left(G_{1}(D), G_{2}(D)\right)=\left(1+D^{2}+D^{3}+D^{5}+D^{6}, 1+D+D^{2}+D^{3}+D^{6}\right)
$$

There will be two tests of your decoder, the "self-test," and the "demonstration" test. Both tests will require your decoder to perform on the BSC ("hard decisions") and the AWGN channel ("soft decisions").

- The Self Test. Here I want you to run experiments with your Viterbi decoder to produce a graph which shows the (approximate) relationship between E_{b} / N_{0} and the decoded bit error probability for the given convolutional code, for E_{b} / N_{0} ranging from 1 dB to 6 dB , in increments of 0.5 dB .
- The Demonstration. At the time of your demonstration, I will ask you to encode N pseudorandom bits, then add Gaussian noise corresponding to a certain value of E_{b} / N_{0}, then decode the noisy bits using both "hard" and "soft" decisions, reporting in each case the number of decoded bit errors. I will not yet say how big N will be, but as discussed in class, I want you to truncate your survivors at length 32, outputting the oldest bit on the survivor with the best metric.
- Important Fact: For a binary code of rate R on the AWGN channel, the relationship between E_{b} / N_{0}, the bit signal-to-noise ratio and σ^{2}, the Gaussian noise variance, is given by

$$
\sigma^{2}=\left(2 R \frac{E_{b}}{N_{0}}\right)^{-1}
$$

so for example for a $R=1 / 2$ code like the Voyager code, the relationship is simply

$$
\sigma^{2}=\left(\frac{E_{b}}{N_{0}}\right)^{-1}
$$

Finally remember that E_{b} / N_{0} is always quoted in "dBs," where a dimensionless quantity x equals $10 \log _{10} x \mathrm{~dB}$'s. Thus for example, a value of E_{b} / N_{0} of 3.5 dB for the Voyager code corresponds to a value of $\sigma^{2}=0.4467$.

Additional details on Class Project 2.

1. Use the recursion

$$
p_{n+6}=p_{n+1} \oplus p_{n} \quad \text { for } n \geq 0
$$

with the initial conditions

$$
p_{0}=1, p_{1}=p_{2}=p_{3}=p_{4}=p_{5}=0
$$

to generate the N information bits. Ensure that the generated sequence is $100000100001 \ldots$ and is periodic with period 63 .
2. Encode the information sequence using the generator polynomials $G_{1}(D)$ and $G_{2}(D)$ given above.
3. The encoder outputs 0 's and 1 's. However, the input to the AWGN is ± 1. Therefore, map 0 's to +1 's and 1 's to -1 's.
4. To simulate the AWGN, add the mean zero, variance σ^{2} normal (Gaussian) random variables generated by the following segment of pseudo-code, to the $\pm 1^{\prime} s$ generated at the previous step. This program outputs two random variables, n_{1} and n_{2}. Use n_{1} (resp. n_{2}) for the encoder output corresponding to the generator polynomial $G_{1}(D)$ (resp. $G_{2}(D)$). SEED and σ (i.e., E_{b} / N_{0}) will be specified at the time of testing your program. urand() is a function which generates a random variable uniformly distributed in the interval $[0,1]$.

```
main()
```

\{
global iurv;
iurv = SEED;
\}
normal $\left(n_{1}, n_{2}, \sigma\right) / *$ See "Donald E.Knuth, The Art of Computer Programming, Vol.2,
p. 104 */
\{
do \{

$$
\begin{aligned}
& x_{1}=\operatorname{urand}() ; \\
& x_{2}=\operatorname{urand}() ;
\end{aligned}
$$

```
        \(x_{1}=2 x_{1}-1 ;\)
        \(x_{2}=2 x_{2}-1 ;\)
            \(/^{*} x_{1}\) and \(x_{2}\) are now uniformly distributed in \([-1,+1] * /\)
        \(s=x_{1}^{2}+x_{2}^{2} ;\)
    \(\}\) while \((s \geq 1.0)\)
    \(n_{1}=\sigma x_{1} \sqrt{-2 \ln s / s} ;\)
    \(n_{2}=\sigma x_{2} \sqrt{-2 \ln s / s} ;\)
\}
urand()
\{
    iurv \(=(14157\) iurv +6925\()(\bmod 32768) ;\)
    return iurv/32767;
\}
```

5. To get the output of the BSC;
(a) Take the sign of the output of the AWGN (Define $\operatorname{Sign}(0)=+1$.)
(b) Map +1 's to 0 's and -1 's to 1 's.
6. Truncate your survivors to length 32 and output the oldest bit on the survivor with the least metric ("Best State Decoding"). The number of the bits to be decoded, N, will be specified at the time of testing your program. To decode N bits, generate $N+32$ bits in (1).

Your program should output the fraction of decode bits in error (BER) in both cases.
The following table lists some typical values.

N	σ	E_{b} / N_{0}	SEED	BER (AWGN)	BER (BSC)
1000	0.8	1.94 dB	101	0.010	0.158
1000	0.9	0.92 dB	111	0.107	0.225

