
EE/Ma 127b Error-Correcting Codes
draft of March 11, 2001

R. J. McEliece
162 Moore

Details of Class Project #2
Due date: To be announced

You (and/or your team; maximum of four students per team) are expected to produce a
computer program to implement the Viterbi decoding algorithm for the Voyager code, i.e.,
the (2, 1, 6, 10) binary convolutional code with generator matrix

(G1(D), G2(D)) = (1 + D2 + D3 + D5 + D6, 1 + D + D2 + D3 + D6).

There will be two tests of your decoder, the “self-test,” and the “demonstration” test.
Both tests will require your decoder to perform on the BSC (“hard decisions”) and the
AWGN channel (“soft decisions”).

• The Self Test. Here I want you to run experiments with your Viterbi decoder to produce
a graph which shows the (approximate) relationship between Eb/N0 and the decoded bit
error probability for the given convolutional code, for Eb/N0 ranging from 1 dB to 6dB,
in increments of 0.5 dB.

• The Demonstration. At the time of your demonstration, I will ask you to encode N
pseudorandom bits, then add Gaussian noise corresponding to a certain value of Eb/N0,
then decode the noisy bits using both “hard” and “soft” decisions, reporting in each case
the number of decoded bit errors. I will not yet say how big N will be, but as discussed
in class, I want you to truncate your survivors at length 32, outputting the oldest bit on
the survivor with the best metric.

• Important Fact: For a binary code of rate R on the AWGN channel, the relationship
between Eb/N0, the bit signal-to-noise ratio and σ2, the Gaussian noise variance, is given
by

σ2 =
(

2R
Eb

N0

)−1

,

so for example for a R = 1/2 code like the Voyager code, the relationship is simply

σ2 =
(

Eb

N0

)−1

.

Finally remember that Eb/N0 is always quoted in “dBs,” where a dimensionless quantity
x equals 10 log10 x dB’s. Thus for example, a value of Eb/N0 of 3.5 dB for the Voyager
code corresponds to a value of σ2 = 0.4467.

1



Additional details on Class Project 2.

1. Use the recursion
pn+6 = pn+1 ⊕ pn for n ≥ 0

with the initial conditions

p0 = 1, p1 = p2 = p3 = p4 = p5 = 0,

to generate the N information bits. Ensure that the generated sequence is 100000100001 . . .
and is periodic with period 63.

2. Encode the information sequence using the generator polynomials G1(D) and G2(D) given
above.

3. The encoder outputs 0’s and 1’s. However, the input to the AWGN is ±1. Therefore, map
0’s to +1’s and 1’s to -1’s.

4. To simulate the AWGN, add the mean zero, variance σ2 normal (Gaussian) random vari-
ables generated by the following segment of pseudo-code, to the ±1′s generated at the
previous step. This program outputs two random variables, n1 and n2. Use n1 (resp. n2)
for the encoder output corresponding to the generator polynomial G1(D) (resp. G2(D)).
SEED and σ (i.e., Eb/N0) will be specified at the time of testing your program. urand() is
a function which generates a random variable uniformly distributed in the interval [0, 1].

main()

{
. . .

global iurv;

. . .

iurv = SEED;

. . .

. . .

}
normal(n1, n2, σ) /* See “Donald E.Knuth, The Art of Computer Programming, Vol.2,
p.104 ” */

{
do {

x1 = urand();

x2 = urand();

2



x1 = 2x1 − 1;

x2 = 2x2 − 1;

/* x1 and x2 are now uniformly distributed in [-1,+1] */

s = x2
1 + x2

2;

} while (s ≥ 1.0)

n1 = σx1

√
−2 ln s/s;

n2 = σx2

√
−2 ln s/s;

}
urand()

{
iurv = (14157iurv + 6925)(mod32768);

return iurv/32767;

}
5. To get the output of the BSC;

(a) Take the sign of the output of the AWGN (Define Sign(0) = +1.)

(b) Map +1’s to 0’s and -1’s to 1’s.

6. Truncate your survivors to length 32 and output the oldest bit on the survivor with the
least metric (“Best State Decoding”). The number of the bits to be decoded, N , will be
specified at the time of testing your program. To decode N bits, generate N + 32 bits in
(1).

Your program should output the fraction of decode bits in error (BER) in both cases.

The following table lists some typical values.

N σ Eb/N0 SEED BER (AWGN) BER (BSC)
1000 0.8 1.94dB 101 0.010 0.158
1000 0.9 0.92dB 111 0.107 0.225

3


