Homework Assignment 3, Solutions

Problem 1.

Proof:
$\left(P\left(\alpha_{0}\right), \quad P\left(\alpha_{1}\right), \quad \cdots, \quad P\left(\alpha_{n-1}\right), \quad P(\infty)\right)=\left(\begin{array}{llll}I_{0}, & I_{1}, & \cdots, & I_{k-1}\end{array}\right)\left(\begin{array}{ccccc}1 & 1 & \cdots & 1 & 0 \\ \alpha_{0} & \alpha_{1} & \cdots & \alpha_{n-1} & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \alpha_{0}^{k-2} & \alpha_{1}^{k-2} & \cdots & \alpha_{n-1}^{k-2} & 0 \\ \alpha_{0}^{k-1} & \alpha_{1}^{k-1} & \cdots & \alpha_{n-1}^{k-1} & 1\end{array}\right)$
is a linear transformation. So this is an $(n+1, k)$ linear code over F .
Below we study the minimum (nonzero) weight of this code.
(1) If $I_{k-1}=0, P(x)$ has degree less than $k-1$ and therefore has no more than $k-2$ roots. So among $\quad P\left(\alpha_{0}\right), P\left(\alpha_{1}\right), \cdots, P\left(\alpha_{n-1}\right)$ at most $\quad k-2$ of them are zeroes. \therefore The weight of the codeword is at least $n-(k-2)=n-k+2$.
(2) If $I_{k-1} \neq 0, P(x)$ has degree $k-1$ and therefore has no more than $k-1$ different roots. So among $P\left(\alpha_{0}\right), P\left(\alpha_{1}\right), \cdots, P\left(\alpha_{n-1}\right)$ at most $k-1$ of them are zeroes. And we have $\quad P(\infty)=I_{k-1} \neq 0 . \quad \therefore$ The weight of the codeword is at least $n-(k-1)+1=n-k+2$.
So the code's weight is at least $n-k+2$. By the Singleton bound the weight o f the code is $n-k+2$, and the code is MDS.

Problem 2.

Proof: The formula in Theorem 8.5 of Wicker (p. 189) is:

$$
A_{w}=\binom{n}{w}(q-1) \sum_{i=0}^{w-d_{\text {nin }}}(-1)^{i}\binom{w-1}{i} q^{w-i-d_{\min }} .
$$

Since for MDS co des $d_{\text {min }}=n-k+1, w-d_{\text {min }}=n-t-d_{\text {min }}=k-t-1$ and the above formula becomes:

$$
\left.\begin{array}{rl}
A_{w} & =\binom{n}{w}(q-1) \sum_{j=0}^{k-t-1}(-1)^{j}\binom{w-1}{j} q^{k-t-1-j} \\
& \left.=\binom{n}{w} \sum_{j=0}^{k-t-1}(-1)^{j}\binom{w-1}{j} q^{k-t-j}-\sum_{j=0}^{k-t-1}(-1)^{j}\binom{w-1}{j} q^{k-t-1-j} \right\rvert\, \\
& \left.=\binom{n}{w} \sum_{j=0}^{k-t-1}(-1)^{j}\binom{w-1}{j}\left(q^{k-t-j}-1\right)-\sum_{j=0}^{k-t-1}(-1)^{j}\binom{w-1}{j}\left(q^{k-t-1-j}-1\right)\right] \\
& \left.=\binom{n}{w} \sum_{j=0}^{k-t-1}(-1)^{j}\binom{w-1}{j}\left(q^{k-t-j}-1\right)+\sum_{j=1}^{k-t}(-1)^{j}\binom{w-1}{j-1}\left(q^{k-t-j}-1\right)\right]
\end{array}\right]
$$

$$
\begin{aligned}
& \left.=\binom{n}{w}\left[\left(q^{k-t}-1\right)+\sum_{j=1}^{k-t-1}(-1)^{j}\left[\binom{w-1}{j}+\binom{w-1}{j-1}\right]^{k-t-j}-1\right)\right] \\
& =\binom{n}{w}_{j=0}^{k-t-1}(-1)^{j}\binom{w}{j}\left(q^{k-t-j}-1\right),
\end{aligned}
$$

and we get the formula derived in class by Prof. McEliece.

Problem 3.

Solution: This problem doesn't have a fixed form of answer. And I give full score to any answer that makes sense.
Generally speaking, the fact that the procedure Euclid returns $\sigma(x)=1$ here means there are too many errors, and a robust algorithm should realize that now or later. If the algorithm is 'poor'-that is, it doesn't check if the received codewords are correctable-then it will use the following recursive formula

$$
S_{j \bmod n}=-\sum_{i=1}^{d} \sigma_{i} S_{j-i}
$$

to compute $S_{j \bmod n}$ for $j=r+1$ to n . Here d is the degree of $\sigma(x)$, so $d=0$ and the values of $S_{j \bmod n}(j=r+1, \cdots, n)$ will not be computed at all. That will lead to decoding error.

Problem 4.

(a) When $e_{0}=16$ and $e_{1}=1$, the decoder will return the codeword that contains the 15 un-erased received symbols as its corresponding symbols, which is different from the correct codeword. So the probability of decoder error is 1 .
(b) When $e_{0}=15$ and $e_{1}=1$, if a decoder error occurs then $e_{1}^{\prime} \leq\left(r-e_{0}\right) / 2 \Rightarrow e_{1}^{\prime}=0$. Therefore the returned codeword has $n-e_{0}-e_{1}=15$ components in common with the correct codeword, which means the returned codeword is the same as the correct codeword and there is no decoder error, and that is a contradiction.
Therefore, the probability of decoder error is 0 .
(c) The positions of the erasures and errors don't affect our analysis below. So WLOG we suppose in the received codeword $\quad\left(C_{0}, C_{1}, \cdots, C_{30}\right)$, the first 14 components- $C_{0}, C_{1}, \cdots, C_{13}$-are erased, the two errors are in C_{14} and C_{15}, and the last 15 components are correct.
If a decoder error occurs, then $e_{1}^{\prime} \leq\left(r-e_{0}\right) / 2 \Rightarrow e_{1}^{\prime} \leq 1$. If $e_{1}^{\prime}=0$, or if $e_{1}^{\prime}=1$ and the position where the received codeword differs from the returned codeword is in C_{14} or C_{15}, then again the returne d codeword will have $n-e_{0}-e_{1}=15$ components in common with the correct codeword, which indicates there is no decoder error. So $e_{1}^{\prime}=1$ if a decoder error occurs, and the position where the received codeword differs from the retu rned codeword must be among $C_{16}, C_{17}, \cdots, C_{30}$.

Say the received codeword differs from the returned codeword in position C_{i} $(16 \leq i \leq 30)$. There are 15 choices for i. Fix i, then no matter what the error in C_{14} is, C_{14} and the 14 components among $C_{16}, C_{17}, \cdots, C_{30}$ except C_{i} determines the returned codeword - and thus determines the value of C_{15}. However, if there doesn't have to be a decoder error, then C_{15} can take on $q-1$ values because the error in it is between 1 and $q-1$. So the probability of decoder error is

$$
\frac{15}{q-1}=\frac{15}{31} \approx 0.484
$$

