Solutions to Homework Assignment 2

Problem 1.

$$
\mathbf{V}_{\mu} \triangleq\left(V_{0}, V_{1} \alpha^{\mu}, \ldots, V_{n-1} \alpha^{\mu(n-1)}\right) .
$$

Therefore the j th component of its DFT is given by

$$
\widehat{V}_{\mu, j}=\sum_{i=0}^{n-1} V_{i} \alpha^{\mu i} \alpha^{i j}=\sum_{i=0}^{n-1} V_{i} \alpha^{i(\mu+j)}=\widehat{V}_{(\mu+j) \bmod n}
$$

since $\alpha^{n}=1$. This is the required result.

Problem 2.

$$
\mathbf{V}=\left(0, \beta^{4}, \beta^{5}, 0, \beta^{7}\right)
$$

where $\beta=\alpha^{3}$. Therefore the DFT of \mathbf{V} is given by

$$
\widehat{V}_{j}=\sum_{i=0}^{4} V_{i} \beta^{i j}, \quad j=0, \ldots, 4
$$

Substituting the values of \mathbf{V} and $\beta=\alpha^{3}$, we compute the components of $\widehat{\mathbf{V}}$ using arithmetic in the field GF(16) to get

$$
\widehat{\mathbf{V}}=\left(\alpha, \alpha^{8}, \alpha^{5}, \alpha^{7}, \alpha^{9}\right)
$$

The support set I of the vector V, i.e. the set of indices for which it is nonzero, is $\{1,2,4\}$. Therefore the error locator polynomial $\sigma_{\mathbf{V}}(x)$ is given by
$\sigma_{\mathbf{V}}(x)=\prod_{i \in I}\left(1-\beta^{i} x\right)=(1-\beta x)\left(1-\beta^{2} x\right)\left(1-\beta^{4} x\right)=1+\alpha^{7} x+\alpha^{4} x^{2}+\alpha^{6} x^{3}$.

The polynomials $\sigma_{\mathbf{V}}^{(i)}(x)$ are defined as

$$
\sigma_{\mathbf{V}}^{(i)}(x)=\prod_{j \in I, j \neq i}\left(1-\beta^{j} x\right)
$$

Therefore we have

$$
\begin{gathered}
\sigma_{\mathbf{V}}^{(1)}(x)=\left(1-\beta^{2} x\right)\left(1-\beta^{4} x\right)=1+\alpha^{4} x+\alpha^{3} x^{2} . \\
\sigma_{\mathbf{V}}^{(2)}(x)=(1-\beta x)\left(1-\beta^{4} x\right)=1+\alpha^{10} x+x^{2} . \\
\sigma_{\mathbf{V}}^{(3)}(x)=(1-\beta x)\left(1-\beta^{2} x\right)=1+\alpha^{2} x+\alpha^{9} x^{2} .
\end{gathered}
$$

The evaluator polynomial $\omega_{\mathbf{V}}(x)$ is then defined as

$$
\omega_{\mathbf{V}}(x)=\sum_{i \in I} V_{i} \sigma_{\mathbf{V}}^{(i)}(x)=\beta^{4} \sigma_{\mathbf{V}}^{(1)}(x)+\beta^{5} \sigma_{\mathbf{V}}^{(2)}(x)+\beta^{7} \sigma_{\mathbf{V}}^{(3)}(x)=\alpha+x^{2}
$$

This completes all the necessary computations.

Problem 3.

We begin by computing a table of powers of α, the primitive root in $\operatorname{GF}(8)$ satisfying $\alpha^{3}=\alpha+1$. We get

$$
\alpha^{3}=\alpha+1, \alpha^{4}=\alpha^{2}+\alpha, \alpha^{5}=\alpha^{2}+\alpha+1, \alpha^{6}=\alpha^{2}+1
$$

Using this table, we perform computations as in the previous problem. We are given

$$
\mathbf{V}=(1, \alpha, 0,0,0,0,0)
$$

The j th component of its DFT is given by

$$
\widehat{V}_{j}=\sum_{i=0}^{6} V_{i} \alpha^{i j}=\alpha+\alpha^{j}
$$

Computing this for all values of j, we get $\widehat{\mathbf{V}}=\left(\alpha^{3}, 0, \alpha^{4}, 1, \alpha^{2}, \alpha^{6}, \alpha^{5}\right)$.
The support set I of V is now $\{0,1\}$. The evaluator polynomial $\sigma(x)$ is therefore given by

$$
\sigma(x)=(1-x)(1-\alpha x)=1+\alpha^{3} x+\alpha x^{2} .
$$

Similarly $\sigma^{(0)}(x)$ and $\sigma^{(1)}(x)$ are given by

$$
\sigma^{(0)}(x)=1+\alpha x, \text { and } \sigma^{(1)}(x)=1+x .
$$

The evaluator polynomial $\omega(x)$ is then given by

$$
\omega(x)=\alpha(1+\alpha x)+1(1+x)=\alpha^{3}+\alpha^{6} x .
$$

Now, $\widehat{\mathbf{V}}$ is supposed to satisfy the recursion $\widehat{V}_{j}=\sigma_{1} \widehat{V}_{j-1}+\sigma_{2} \widehat{V}_{j-2}$. In this case $\sigma_{1}=\alpha^{3}$ and $\sigma_{2}=\alpha$. Therefore the RHS of the recursion simplifies to

$$
\alpha^{3}\left(\alpha+\alpha^{j-1}\right)+\alpha\left(\alpha+\alpha^{j-2}\right)=\left(\alpha^{4}+\alpha^{2}\right)+\alpha^{j-1}\left(1+\alpha^{3}\right)=\alpha+\alpha^{j}=\widehat{V}_{j}
$$

as required. Therefore the recursion is satisfied.

Problem 4.

The received vector is $\mathbf{R}=\left(\alpha^{3}, 1, \alpha, \alpha^{2}, \alpha^{3}, \alpha, 1\right)$. We first compute the syndrome polynomial $S(x)$ of degree $r-1=3$ in which the coefficient of x^{j-1} for $j=1, \ldots, 4$ is given by

$$
S_{j}=\sum_{i=0}^{n-1} R_{i} \alpha^{i j}
$$

Carrying out these computations, we get $S(x)=\alpha^{2}+\alpha^{6} x+\alpha^{5} x^{2}+\alpha^{6} x^{3}$. Since the syndrome is nonzero, the received vector has errors. Since $r=4$, we have $t=2$. We now need to run Euclid's algorithm in order to compute $\sigma(x)$ and $\omega(x)$. We implement the procedure Euclid $\left[x^{r}, S(x), t, t-1\right]$, and this procedure returns the output $v(x)=\alpha^{5}+\alpha^{3} x+\alpha^{3} x^{2}$ and $r(x)=1+x$. Now, we have $\sigma(x)=v(x) / v(0)$ and $\omega(x)=r(x) / v(0)$. Thus we get $\sigma(x)=$ $1+\alpha^{5} x+\alpha^{5} x^{2}$ and $\omega(x)=\alpha^{2}+\alpha^{2} x$.

Time domain completion:

Now we compute $\sigma\left(\alpha^{-i}\right)$ for $0 \leq i \leq 6$ and find that $\sigma\left(\alpha^{-2}\right)=\sigma\left(\alpha^{-3}\right)=0$. Thus there are errors in locations 2 and 3. To compute the values of the error vector in these locations, we first need to compute the formal derivative $\sigma^{\prime}(x)$ of $\sigma(x)$. This is given by $\sigma^{\prime}(x)=\alpha^{5}+2 \alpha^{5} x=\alpha^{5}$, since 2 is the same as 0 in the field we are working in. Now, in the error locations, we have $E_{i}=-\omega\left(\alpha^{-i}\right) / \sigma^{\prime}\left(\alpha^{-i}\right)$. Carrying out this computation, we get $E_{2}=\alpha$ and
$E_{3}=\alpha^{2}$. Thus $\mathbf{E}=\left(0,0, \alpha, \alpha^{2}, 0,0,0\right)$. Subtracting this error vector from the received vector, we get the decoded vector $\widehat{\mathbf{C}}$ as

$$
\widehat{\mathbf{C}}=\left(\alpha^{3}, 1,0,0, \alpha^{3}, \alpha, 1\right)
$$

Frequency domain completion:

We must now compute the coefficients S_{5}, S_{6}, and S_{7} of the syndrome vector by the recursion

$$
S_{j}=-\sigma_{1} S_{j-1}-\sigma_{2} S_{j-2}=\alpha^{5} S_{j-1}+\alpha^{5} S_{j-2}
$$

and thus we get the full syndrome vector to be $\mathbf{S}=\left(\alpha^{4}, \alpha^{2}, \alpha^{6}, \alpha^{5}, \alpha^{6}, \alpha^{6}, 0\right)$. The error vector \mathbf{E} is now given by the inverse DFT of \mathbf{S} and works out to be ($0,0, \alpha, \alpha^{2}, 0,0,0$) again. Therefore we get again

$$
\widehat{\mathbf{C}}=\left(\alpha^{3}, 1,0,0, \alpha^{3}, \alpha, 1\right)
$$

Problem 5.

The received vector this time is $\mathbf{R}=\left(1, \alpha, \alpha^{2}, *, *, *, *\right)$ where the $*$'s denote erasures. The erasures are in positions $3,4,5$ and 6 , and therefore the erasure locator polynomial is given by
$\sigma_{0}(x)=\left(1-\alpha^{3} x\right)\left(1-\alpha^{4} x\right)\left(1-\alpha^{5} x\right)\left(1-\alpha^{6} x\right)=1+\alpha^{5} x+\alpha^{4} x^{2}+x^{3}+\alpha^{4} x^{4}$.
We now replace the erasures by 0's and then compute the syndrome of this modified received vector. $S(x)$ works out to be $\alpha^{3}+\alpha^{5} x^{2}+\alpha^{6} x^{2}+\alpha^{6} x^{3}$. Now we compute $S_{0}(x)=\sigma_{0}(x) S(x) \bmod x^{r}$ which works out to be $\alpha^{3}+$ $\alpha^{6} x+\alpha^{5} x^{2}+\alpha^{2} x^{3}$. Now in this case, since we have 3 erasures, we know that we can correct no errors, i.e. we assume that no errors were made, therefore we get $\sigma_{1}(x)=1$ and $\omega(x)=S_{0}(x)=\alpha^{3}+\alpha^{6} x+\alpha^{5} x^{2}+\alpha^{2} x^{3}$. Euclid's algorithm would also return the same answer at the first step. Also we now get $\sigma(x)=\sigma_{0}(x) \sigma_{1}(x)=\sigma_{0}(x)$. Its formal derivative $\sigma^{\prime}(x)$ is now given by $\alpha^{5}+2 \alpha^{4} x+3 x^{2}+4 \alpha^{4} x^{3}=\alpha^{5}+x^{2}$. Now we compute $\sigma\left(\alpha^{-i}\right)$ for each i and as expected it is zero for $i=3,4,5$ and 6 . We compute $E_{i}=-\omega\left(\alpha^{-i}\right) / \sigma^{\prime}\left(\alpha^{-i}\right)$ for these values of i and get the error vector \mathbf{E} to be $\left(0,0,0, \alpha^{3}, \alpha^{4}, \alpha^{5}, \alpha^{6}\right)$. Therefore the decoded codeword is given by

$$
\widehat{\mathbf{C}}=\left(1, \alpha, \alpha^{2}, \alpha^{3}, \alpha^{4}, \alpha^{5}, \alpha^{6}\right)
$$

