EE/Ma 127b Error-Correcting Codes draft of January 29, 2001 Homework Assignment 2 Final version Due 9am February 2, 2001 R. J. McEliece 162 Moore

Reading: Wicker, Chapter 2, Section 8.1, pp. 176–183. RJM "Chapter 9", pp. 1–18, 21–24, 29–33.

Problems to Hand In:

Problem 1. RJM Chapter 9, Problem 9.10.

Problem 2. RJM Chapter 9, Problem 9.15. [Note: the vector V should be defined as

$$\mathbf{V} = (0, \beta^4, \beta^5, 0, \beta^7).]$$

Problem 3. Let α be a primitive root in GF(8) satisfying $\alpha^3 = \alpha + 1$, and let V denote the length-8 vector $(\alpha, 1, 0, 0, 0, 0)$. Compute the corresponding quantities $\sigma(x)$, $\omega(x)$, and \hat{V} . Verify that the components of \hat{V} satisfy a circular recursion corresponding to the polynomial $\sigma(x)$.

Problem 4. RJM Chapter 9, Problem 9.32. Please use both the time domain and the frequency domain completion.

Problem 5. Consider the following partly erased codeword from the (7,3) RS code from Example 9.8:

$$(1, \alpha, \alpha^2, *, *, *, *).$$

Assuming there are no errors, use the RS errors-and-erasures decoding algorithm to fill in the four erasures and thereby "encode" the information block $(1, \alpha, \alpha^2)$.