EE/Ma 127b Error-Correcting Codes
draft of January 29, 2001
R. J. McEliece

162 Moore

Homework Assignment 2 Final version
Due 9am February 2, 2001
Reading: Wicker, Chapter 2, Section 8.1, pp. 176-183.
RJM "Chapter 9", pp. 1-18, 21-24, 29-33.
Problems to Hand In:
Problem 1. RJM Chapter 9, Problem 9.10.
Problem 2. RJM Chapter 9, Problem 9.15. [Note: the vector V should be defined as

$$
\left.\mathbf{V}=\left(0, \beta^{4}, \beta^{5}, 0, \beta^{7}\right) .\right]
$$

Problem 3. Let α be a primitive root in $\operatorname{GF}(8)$ satisfying $\alpha^{3}=\alpha+1$, and let V denote the length- 8 vector ($\alpha, 1,0,0,0,0,0$). Compute the corresponing quantities $\sigma(x), \omega(x)$, and \widehat{V}. Verify that the components of \widehat{V} satisfy a circular recursion corresponding to the polynomial $\sigma(x)$.

Problem 4. RJM Chapter 9, Problem 9.32. Please use both the time domain and the frequency domain completion.

Problem 5. Consider the following partly erased codeword from the (7,3) RS code from Example 9.8:

$$
\left(1, \alpha, \alpha^{2}, *, *, *, *\right)
$$

Assuming there are no errors, use the RS errors-and-erasures decoding algorithm to fill in the four erasures and thereby "encode" the information block $\left(1, \alpha, \alpha^{2}\right)$.

