Reading: Handout: "Hex Arithmetic"
Handout: "Chapter 9: BCH, Reed-Solomon, and Related Codes," pp. 1-2.

Problems to Hand In:

Problem 1. Referring to the $(15,7)$ double-error correcting BCH code with "Hex" paritycheck matrix

$$
H=\left[\begin{array}{lllllllllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & A & B & C & D & E & F \\
1 & 8 & F & C & A & 1 & 1 & A & F & F & C & 8 & A & 8 & C
\end{array}\right],
$$

using the decoding algorithm we discussed in class on November 15 and 17, decode the following five vectors:

1	0	1	0	1	1	0	0	0	0	1	0	0	0	0
1	0	1	0	1	1	0	0	0	1	1	0	0	0	0
1	1	1	1	1	1	1	0	0	0	0	1	1	0	0
0	0	0	0	0	0	1	1	0	1	1	0	0	1	0
0	0	1	0	1	0	0	0	0	0	0	0	0	1	1

That is, find the nearest codeword, if it is within distance 2 or less. If there is no such codeword, report "more than 2 errors."

Problem 2. In class on Monday November 20, I reordered the columns of H as follows:

$$
H^{\prime}=\left[\begin{array}{lllllllllllllll}
1 & 2 & 4 & 8 & 3 & 6 & C & B & 5 & A & 7 & E & F & D & 9 \\
1 & 8 & C & A & F & 1 & 8 & C & A & F & 1 & 8 & C & A & F
\end{array}\right],
$$

Note that the the first row of H^{\prime} consists of the successive powers of 2, i.e.,

$$
1,2,2^{2}=4,2^{3}=8,2^{4}=3, \ldots, 2^{14}=9 .
$$

Note also that $2^{15}=1$.
(a) Show that the $(15,7)$ code defined by H^{\prime} is cyclic.
(b) Find a generator polynomial for the code defined by H^{\prime}. (You may assume that the dimension of the code is 7 .)

Problem 3. In class on Wednesday Nov. 22, I used the irreduclble polynomial $x^{3}+x+1$ to define a field multiplication on 3 -bit vectors and that the corresponding multiplication rule is

$$
\left[a_{0}, a_{1}, a_{2}\right] \cdot\left[b_{0}, b_{1}, b_{2}\right]=\left[c_{0}, c_{1}, c_{2}\right],
$$

where

$$
\begin{aligned}
& c_{0}=a_{0} b_{0}+a_{1} b_{2}+a_{2} b_{1} \\
& c_{1}=a_{0} b_{1}+a_{1} b_{0}+a_{1} b_{2}+a_{2} b_{1}+a_{2} b_{2} \\
& c_{2}=a_{0} b_{2}+a_{1} b_{1}+a_{2} b_{0}+a_{2} b_{2} .
\end{aligned}
$$

(a) Using the fact that $x^{4}+x+1$ is irreducible, find a similar rule for multiplying 4-bit vectors that makes a field with 16 elements.
(b) Using the rule you developed in part (a), compute the product of D and 4 in the HexField.

Problem 4. In class on November 27, I used the "extended Euclidean algorithm" to compute the inverse of " D " in the HexField. Please compute the inverse of " F " using the same method.

