EE/Ma 127a Error-Correcting Codes
draft of November 15, 2000
R. J. McEliece

162 Moore

Homework Assignment 6 (Final Version)
Due (in class) 9am November 17, 2000
Reading: Wicker, Section 5.3, pp. 121-127
Handout: "Chapter 8: Cyclic Codes," pp. 27-31.
Problems to Hand In:
Problem 1. Handout "Chapter 8: Cyclic codes," Problem 8.70.
Problem 2. Wicker,, Problem 5.9 (p. 128). (Note that the code C_{1} is defined before Problem 1 on p. 127.)

Problem 3. In class on Wednesday Nov. 15, I proposed defining a parity-check matrix for a $\mathrm{n}=15$ double error-correcting code of the form

$$
H=\left(\begin{array}{cccccc}
1 & 2 & 3 & \cdots D & E & F \\
f(1) & f(2) & f(3) & \cdots f(D) & f(E) & f(F)
\end{array}\right)
$$

where f is a function mapping four-bit vectors to four-bit vectors. I showed that if $f(x)=$ $T x$, where T is a linear transformation, this construction doesn't work. In this problem, you are to consider an affine transformation, i.e., one of the form $f(x)=T x+y$, where T is a linear transformation, and y is a nonzero vector.
(a) What is the minimum distance of the resulting code?
(b) What is the dimension of the resulting code?

