Solutions to Homework Assignment 5

Problem 1.

The i-th column of the parity check matrix of the $(7,3)$ Abramson code has the form $\left(x^{i} \bmod g(x), 1\right)^{T}$, where $g(x)$ is a primitive polynomial of degree 3 , i.e. is a generator polynomial for a cyclic $(7,4)$ Hamming code. The syndrome of a burst with pattern 111 and location i is gotten by adding the i th, $(i+1)$ st and $(i+2)$ nd column of the parity check matrix. The syndrome therefore is given by $\left(\left(x^{i}+x^{i+1}+x^{i+2}\right) \bmod g(x), 1\right)^{T}$. Now we have

$$
\left(x^{i}+x^{i+1}+x^{i+2}\right) \bmod g(x)=x^{i}\left(1+x+x^{2}\right) \bmod g(x)
$$

Note that the right hand side of this equation is nonzero, because $g(x)$ is irreducible (property of a primitive polynomial) and is coprime with both x^{i} and $1+x+x^{2}$ (because it has degree less than the degree of $g(x)$. But any nonzero vector of length 3 (or a polynomial of degree 2) is a power of x modulo $g(x)$, say $x^{e} \bmod g(x)$. But then the syndrome of the burst with pattern 111 and location i is the same as the syndrome of the burst with pattern 1 and location e.

Therefore every burst having pattern 111 has the syndrome as some burst with pattern 1.

Problem 2.

The Abramson bound gives $r \geq \log _{2}(n+1)+b-1=b+4$. The Reiger bound gives $r \geq 2 b$. It is easy to see that the Abramson bound is stronger for $b<4$ and the Reiger bound is stronger for $b>4$. At $b=4$ the two bounds coincide.

Problem 3.

For $b=3$, the Abramson bound gives $r \geq 7$ and the Reiger bound gives $r \geq 6$. So together we have $r \geq 7$. However, from Table 8.1 in the handout, we see that the $x^{31}+1$ has irreducible factors of degrees 1 and 5 only. Thus, it cannot have a factor of degree 7 , i.e. there is no $(31,24)$ cyclic code. Therefore for $b=3$ there is no cyclic code that meets the bound of Problem 2 .

Problem 4.

The classical Fire codes have generator polynomial of the form $g(x)=$ $\left(x^{2 b}+1\right) f(x)=\left(x^{21}+1\right) f(x)$, since $b=11$ in this case. Let degree $f(x)$ be m, then n_{0}, the period of $f(x)$, is at most $2^{m}-1$, achieved when $f(x)$ is primitive. Therefore the length of the code is the lcm of $2 b-1$ and n_{0} (by the Corollary on Page 30 of the handout), which is at most $21\left(2^{m}-1\right)$. The code has redundancy equal to the degree of $g(x)$, which is $m+21$. Therefore the dimension of the code is at most $21\left(2^{m}-1\right)-(m+21)$. We require that this is at least 100000 , and the smallest m that satisfies this constraint happens to be $m=13$.

Therefore we pick $f(x)$ to be any primitive polynomial of degree 13 from Appendix A in Wicker, say $f(x)=1+x+x^{3}+x^{4}+x^{13}$. Then check that $m>b$ and $f(x)$ is not a divisor of $x^{21}+1$. Hence by the Corollary on Page 30 of the handout, the code generated by $g(x)=\left(x^{21}+1\right) f(x)$ is a 11-burst error correcting code.

The code parameters are also given by the same Corollary. n is given by the lcm of 21 and $2^{m}-1$ which is 172011. r is $21+m=34$, and therefore $k=171977$, which is bigger than 100000, as required. Therefore we have a 11-burst correcting $(172011,171977)$ code.

Problem 5(a).

By the Fire code construction, n_{m} is the lcm of $2 b-1$ and $2^{m}-1$, i.e. the 1 cm of 5 and $2^{m}-1$. Now notice that the last digit of 2^{m} cycles through the values $2,4,8,6$ periodically. $2^{m}-1$ is divisible by 5 only if the last digit of 2^{m} is 6 , and that happens only when m is a multiple of 4 .

Therefore $n_{m}=2^{m}-1$ when m is a multiple of 4 , and $5\left(2^{m}-1\right)$ otherwise.
$k_{m}=n_{m}-(m+5)$. Therefore $k_{m}=2^{m}-m-6$ when m is a multiple of 4 , and $5.2^{m}-m-10$ otherwise.

Problem 5(b).

Actual redundancy $r_{m}=m+5$.
When m is a multiple of 4 , the Abramson bound says $r \geq \log _{2}(n+1)+(b-$ 1) $=\log _{2}\left(2^{m}\right)+3-1=m+2$.

When m is not a multiple of 4 , the Abramson bound for large m says $r \geq$ $\log _{2}\left(5\left(2^{m}-1\right)+1\right)+3-1=\log _{2} 5+m+2=m+4.32$, i.e. $r \geq m+5$.

Therefore the Fire codes constructed meet the weak Abramson bound when m is not a multiple of 4 in the limit of large m, and differ from it by 3 , when m is a multiple of 4 .

