Solutions to Homework Assignment 5

Problem 1.

The *i*-th column of the parity check matrix of the (7,3) Abramson code has the form $(x^i \mod g(x), 1)^T$, where g(x) is a primitive polynomial of degree 3, i.e. is a generator polynomial for a cyclic (7,4) Hamming code. The syndrome of a burst with pattern 111 and location *i* is gotten by adding the *i*th, (i+1)st and (i+2)nd column of the parity check matrix. The syndrome therefore is given by $((x^i + x^{i+1} + x^{i+2}) \mod g(x), 1)^T$. Now we have

$$(x^{i} + x^{i+1} + x^{i+2}) \mod g(x) = x^{i}(1 + x + x^{2}) \mod g(x)$$

Note that the right hand side of this equation is nonzero, because g(x) is irreducible (property of a primitive polynomial) and is coprime with both x^i and $1 + x + x^2$ (because it has degree less than the degree of g(x). But any nonzero vector of length 3 (or a polynomial of degree 2) is a power of x modulo g(x), say $x^e \mod g(x)$. But then the syndrome of the burst with pattern 111 and location i is the same as the syndrome of the burst with pattern 1 and location e.

Therefore every burst having pattern 111 has the syndrome as some burst with pattern 1.

Problem 2.

The Abramson bound gives $r \ge \log_2(n+1) + b - 1 = b + 4$. The Reiger bound gives $r \ge 2b$. It is easy to see that the Abramson bound is stronger for b < 4 and the Reiger bound is stronger for b > 4. At b = 4 the two bounds coincide.

Problem 3.

For b = 3, the Abramson bound gives $r \ge 7$ and the Reiger bound gives $r \ge 6$. So together we have $r \ge 7$. However, from Table 8.1 in the handout, we see that the $x^{31}+1$ has irreducible factors of degrees 1 and 5 only. Thus, it cannot have a factor of degree 7, i.e. there is no (31,24) cyclic code. Therefore for b = 3 there is no cyclic code that meets the bound of Problem 2.

Problem 4.

The classical Fire codes have generator polynomial of the form $g(x) = (x^{2b} + 1)f(x) = (x^{21} + 1)f(x)$, since b = 11 in this case. Let degree f(x) be m, then n_0 , the period of f(x), is at most $2^m - 1$, achieved when f(x) is primitive. Therefore the length of the code is the lcm of 2b - 1 and n_0 (by the Corollary on Page 30 of the handout), which is at most $21(2^m - 1)$. The code has redundancy equal to the degree of g(x), which is m + 21. Therefore the dimension of the code is at most $21(2^m - 1) - (m + 21)$. We require that this is at least 100000, and the smallest m that satisfies this constraint happens to be m = 13.

Therefore we pick f(x) to be any primitive polynomial of degree 13 from Appendix A in Wicker, say $f(x) = 1 + x + x^3 + x^4 + x^{13}$. Then check that m > b and f(x) is not a divisor of $x^{21} + 1$. Hence by the Corollary on Page 30 of the handout, the code generated by $g(x) = (x^{21} + 1)f(x)$ is a 11-burst error correcting code.

The code parameters are also given by the same Corollary. n is given by the lcm of 21 and $2^m - 1$ which is 172011. r is 21 + m = 34, and therefore k = 171977, which is bigger than 100000, as required. Therefore we have a 11-burst correcting (172011,171977) code.

Problem 5(a).

By the Fire code construction, n_m is the lcm of 2b - 1 and $2^m - 1$, i.e. the lcm of 5 and $2^m - 1$. Now notice that the last digit of 2^m cycles through the values 2, 4, 8, 6 periodically. $2^m - 1$ is divisible by 5 only if the last digit of 2^m is 6, and that happens only when m is a multiple of 4.

Therefore $n_m = 2^m - 1$ when m is a multiple of 4, and $5(2^m - 1)$ otherwise.

 $k_m = n_m - (m+5)$. Therefore $k_m = 2^m - m - 6$ when m is a multiple of 4, and $5 \cdot 2^m - m - 10$ otherwise.

Problem 5(b).

Actual redundancy $r_m = m + 5$. When m is a multiple of 4, the Abramson bound says $r \ge \log_2(n+1) + (b-1) = \log_2(2^m) + 3 - 1 = m + 2$. When m is not a multiple of 4, the Abramson bound for large m says $r \ge \log_2(5(2^m - 1) + 1) + 3 - 1 = \log_2 5 + m + 2 = m + 4.32$, i.e. $r \ge m + 5$. Therefore the Fire codes constructed meet the weak Abramson bound

when m is not a multiple of 4 in the limit of large m, and differ from it by 3, when m is a multiple of 4.