Reading: Wicker, Sections 16.1. 16.4.2
Handout: "Chapter 8: Cyclic Codes," pp. 27-31.

Problems to Hand In:

Problem 1. Problem 8.68 from the handout "Chapter 8: Cyclic Codes."
Problem 2. For $n=31$, and for each $b=1,2, \ldots, 15$, use the Abramson and Reiger bounds to estimate the minimum redundancy needed for a burst-b correcting code of length n.

Problem 3. (Continued) Now focus on the case $n=31, b=3$. Do you think there is a cyclic code that meets the bound you found in Problem 2? [Hint: Use Table 8.1 in the handout.]

Problem 4. Using the definition of "Classical" Fire codes as given in the Corollary on page 30, and the list of primitve polynomials in Wicker, Appendix A, design (i.e., find a generator polynomial for) a cyclic code with $k \geq 100,000$, capable of correcting any single burst error pattern of length 11 or less. Explicitly calculate n and k for your code.

Problem 5. Let $g_{m}(x)=\left(x^{5}+1\right) f_{m}(x)$, where $f_{m}(x)$ is a primitive polynomial of degreee m. Then for $m \geq 3, g_{m}(x)$ generates a $b=3$ Fire code, which we denote by F_{m}.
(a) Find the parameters $\left(n_{m}, k_{m}\right)$ for the code F_{m}.
(b) Compare the actual redundancy $r_{m}=n_{m}-k_{m}$ of F_{m} to that predicted by the "weak" Abramson bound $r \geq\left\lceil\log _{2}(n+1)\right\rceil+(b-1)$, as $m \rightarrow \infty$

