EE/Ma127aError -CorrectingCodesR.J.McEliece DraftofNovember7,2000 162Moore HomeworkAssignment4,Solutions

Problem1. $n=8 \times {}^{8}-1=(x+1)^{8}$

n=8,x -1=(x+1)	
(<i>n</i> , <i>k</i>)	g(x)
(8,8)	1
(8,7)	x+1
(8,6)	$(x+1)^2$
(8,5)	$(x+1)^{3}$
(8,4)	$(x+1)^4$
(8,3)	$(x+1)^{5}$
(8,2)	$(x+1)^{6}$
(8,1)	$(x+1)^{7}$
(8,0)	$(x+1)^{8}$

 $n=9, x^{9}-1=(x+1)(x^{2}+x+1)(x^{6}+x^{3}+1)$

(n,k)	g(x)
(9,9)	1
(9,8)	x+1
(9,7)	x ² +x+1
(9,6)	$(x+1)(x^2+x+1)$
(9,3)	$x^{6}+x^{3}+1$
(9,2)	$(x+1)(x^6+x^3+1)$
(9,1)	$(x^2+x+1)(x^6+x^3+1)$
(9,0)	$(x+1)(x^2+x+1)(x^6+x^3+1)$

$n=10,x^{10}-1=(x+1)^2(x^4+x^3+x^2+x+1)^2$

(<i>n</i> , <i>k</i>)	g(x)
(10,10)	1
(10,9)	x+1
(10,8)	$(x+1)^2$
(10,6)	$x^4 + x^3 + x^2 + x + 1$
(10,5)	$(x+1)(x^{4}+x^{3}+x^{2}+x+1)$
(10,4)	$(x+1)^2(x^4+x^3+x^2+x+1)$
(10,2)	$(x^4+x^3+x^2+x+1)^2$
(10,1)	$(x+1)(x^{4}+x^{3}+x^{2}+x+1)^{2}$
(10,0)	$(x+1)^2(x^4+x^3+x^2+x+1)^2$

Problem2.

 $x^{9}-1=(x+1)(x^{2}+x+1)(x^{6}+x^{3}+1),g(x)=(x+1)(x^{2}+x+1)=1+x^{3}$ h(x)=1+x^{3}+x^{6}, $\tilde{h}(x)=1+x^{3}+x^{6}$

$$G_{1} = \begin{bmatrix} g(x) \\ xg(x) \\ x^{2}g(x) \\ x^{3}g(x) \\ x^{4}g(x) \\ x^{5}g(x) \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ \end{bmatrix}$$
$$H_{1} = \begin{bmatrix} \tilde{h}(x) \\ \tilde{h}(x) \\ x^{2}\tilde{h}(x) \\ x^{2}\tilde{h}(x) \end{bmatrix} = \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \end{pmatrix}$$

Fori=0,1,...,8,x
$$^{i}modg(x)=x ^{i}mod(x ^{3}+1)=x^{imod3}$$

$$G_{2} = \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

$$H_{2} = \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \end{pmatrix}$$

Problem3.

$$g(x)=x^8+x^7+x^6+x^4+1$$
, $h(x)=(x^{15}-1)/g(x)=x^7+x^6+x^4+1$.
The three different shift -register encoders are:

- (1) Thenon -systematicencoderoftheforminfigure8.1,"Chapter8"handout.
- (2) Thesystematicencoderoftheforminfigure8.5, "Chapter8" handout.
- (3) Thesystematicencoderoftheforminfigure8.7, "Chapter8" handout.

Problem4.

(a)																										
	(1	0	0	1	0	1	1	0	0	1	1	1	1	1	0	0	0	1	1	0	1	1	1	0	1	0)
	0	1	0	0	1	0	1	1	0	0	1	1	1	1	1	0	0	0	1	1	0	1	1	1	0	1
A =	1	0	1	1	0	0	1	1	1	1	1	0	0	0	1	1	0	1	1	1	0	1	0	1	0	0
	0	1	0	1	1	0	0	1	1	1	1	1	0	0	0	1	1	0	1	1	1	0	1	0	1	0
	0	0	1	0	1	1	0	0	1	1	1	1	1	0	0	0	1	1	0	1	1	1	0	1	0	1)

 $H=[A|I_5]$

(b)Thedecodingcircuitisoftheforminfigure8.8,"Chapter8"handout.

Problem5.

(a) C_k is the dual code of the (n, n -k) cyclic Hamming code, son = 2 ^k-1.

(Note: The proof needs the condition that C k is the dual code of a Hamming code, without which we can not complete the proof. However, the problem doesn't clearly state that you can use that condition, so I won't deduct any point for this sub-problem.)

- (b) $n=2^{k}-1$, sor=n -k>kexceptforthetrivialcasek=2. Soanencoderoftheformin figure 8.7, "Chapter 8 "ispreferred because it uses fewer components than the encoder sinfigure 8.5 or figure 8.1.
- (c) ThesetofcyclicshiftsofthefirstrowofG $_1$ are: $[x^ig(x)]_n(i=0,1,2,...,n-1)$,each ofwhichisanon -zerocodeword.Sincethereareexactly2 k -1non -zero codewords,andn=2 k -1,wejustneedtoprovethatnotwodistinctcyclicshiftsof thefirstrowarethesame.Andweproveitbycontradiction. WLOG,supposethereexistiandjs.t.0 $\leq i < j \leq n-1, [x^ig(x)]_n = [x^jg(x)]_n$. Then $[x^jg(x)-x^ig(x)]_n=0 \Rightarrow (x^n-1)|(x^jg(x)-x^ig(x)) \Rightarrow g(x)h(x)|x^i(x^{j-i}-1)g(x) \Rightarrow h(x)|x^i(x^{j-i}-1).Sinceh(x)isprimitive,h(x)isirreducible.Soeitherh(x)|x ^i or h(x)|(x ^{j-i}-1).However,sinceh(x)isprimitive,and0<j -i<n=2^k-1,h(x)candivide neitherx ^i norx ^{j-i}-1.Sothereisacontradiction.$

(d) Since C_kisasimplexcode ,allitsnon -zerocodewordshaveweight(n+1)/2.So theweightenumeratoris: $A(z)=1+(2^k-1)z^{(n+1)/2}$

Problem6.

Forb=1,therearenordinaryburstsoflengthb.

For $2 \le b \le n$, there are b+1 possibilities for the location of the ordinary burst. The bits between the first 1 and 1 ast 1 in the burst pattern can be arbitrary, and there are 2-2such strings. So the number of ordinary burst sis $(n - b+1)2^{b-2}$.-2