EE/Ma 127a Error-Correcting Codes
Draft of November 7, 2000
R. J. McEliece 162 Moore

Homework Assignment 4, Solutions

Problem 1.

$\mathrm{n}=8, \mathrm{x}^{8}-1=(\mathrm{x}+1)^{8}$

(n, k)	$g(x)$
$(8,8)$	1
$(8,7)$	$\mathrm{x}+1$
$(8,6)$	$(\mathrm{x}+1)^{2}$
$(8,5)$	$(\mathrm{x}+1)^{3}$
$(8,4)$	$(\mathrm{x}+1)^{4}$
$(8,3)$	$(\mathrm{x}+1)^{5}$
$(8,2)$	$(\mathrm{x}+1)^{6}$
$(8,1)$	$(\mathrm{x}+1)^{7}$
$(8,0)$	$(\mathrm{x}+1)^{8}$

$\mathrm{n}=9, \mathrm{x}^{9}-1=(\mathrm{x}+1)\left(\mathrm{x}^{2}+\mathrm{x}+1\right)\left(\mathrm{x}^{6}+\mathrm{x}^{3}+1\right)$

(n, k)	$\mathrm{g}(\mathrm{x})$
$(9,9)$	1
$(9,8)$	$\mathrm{x}+1$
$(9,7)$	$\mathrm{x}^{2}+\mathrm{x}+1$
$(9,6)$	$(\mathrm{x}+1)\left(\mathrm{x}^{2}+\mathrm{x}+1\right)$
$(9,3)$	$\mathrm{x}^{6}+\mathrm{x}^{3}+1$
$(9,2)$	$(\mathrm{x}+1)\left(\mathrm{x}^{6}+\mathrm{x}^{3}+1\right)$
$(9,1)$	$\left(\mathrm{x}^{2}+\mathrm{x}+1\right)\left(\mathrm{x}^{6}+\mathrm{x}^{3}+1\right)$
$(9,0)$	$(\mathrm{x}+1)\left(\mathrm{x}^{2}+\mathrm{x}+1\right)\left(\mathrm{x}^{6}+\mathrm{x}^{3}+1\right)$

$\mathrm{n}=10, \mathrm{x}^{10}-1=(\mathrm{x}+1)^{2}\left(\mathrm{x}^{4}+\mathrm{x}^{3}+\mathrm{x}^{2}+\mathrm{x}+1\right)^{2}$

(n, k)	$\mathrm{g}(\mathrm{x})$
$(10,10)$	1
$(10,9)$	$\mathrm{x}+1$
$(10,8)$	$(\mathrm{x}+1)^{2}$
$(10,6)$	$\mathrm{x}^{4}+\mathrm{x}^{3}+\mathrm{x}^{2}+\mathrm{x}+1$
$(10,5)$	$(\mathrm{x}+1)\left(\mathrm{x}^{4}+\mathrm{x}^{3}+\mathrm{x}^{2}+\mathrm{x}+1\right)$
$(10,4)$	$(\mathrm{x}+1)^{2}\left(\mathrm{x}^{4}+\mathrm{x}^{3}+\mathrm{x}^{2}+\mathrm{x}+1\right)$
$(10,2)$	$\left(\mathrm{x}^{4}+\mathrm{x}^{3}+\mathrm{x}^{2}+\mathrm{x}+1\right)^{2}$
$(10,1)$	$(\mathrm{x}+1)\left(\mathrm{x}^{4}+\mathrm{x}^{3}+\mathrm{x}^{2}+\mathrm{x}+1\right)^{2}$
$(10,0)$	$(\mathrm{x}+1)^{2}\left(\mathrm{x}^{4}+\mathrm{x}^{3}+\mathrm{x}^{2}+\mathrm{x}+1\right)^{2}$

Problem 2.

$\mathrm{x}^{9}-1=(\mathrm{x}+1)\left(\mathrm{x}^{2}+\mathrm{x}+1\right)\left(\mathrm{x}^{6}+\mathrm{x}^{3}+1\right), \mathrm{g}(\mathrm{x})=(\mathrm{x}+1)\left(\mathrm{x}^{2}+\mathrm{x}+1\right)=1+\mathrm{x}^{3}$
$\mathrm{h}(\mathrm{x})=1+\mathrm{x}^{3}+\mathrm{x}^{6}, \tilde{h}(x)=1+x^{3}+x^{6}$

$$
\begin{aligned}
& G_{1}=\left[\begin{array}{c}
g(x) \\
x g(x) \\
x^{2} g(x) \\
x^{3} g(x) \\
x^{4} g(x) \\
x^{5} g(x)
\end{array}\right]=\left(\begin{array}{lllllllll}
1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1
\end{array}\right) \\
& H_{1}=\left[\begin{array}{c}
\tilde{h}(x) \\
\tilde{x}(x) \\
x^{2} \tilde{h}(x)
\end{array}\right]=\left(\begin{array}{lllllllll}
1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

For $i=0,1, \ldots, 8, x^{i} \bmod g(x)=x^{i} \bmod \left(x^{3}+1\right)=x^{i \bmod 3}$

$$
G_{2}=\left(\begin{array}{lllllllll}
1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right) H_{2}=\left(\begin{array}{lllllllll}
1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1
\end{array}\right)
$$

Problem 3.

$g(x)=x^{8}+x^{7}+x^{6}+x^{4}+1, h(x)=\left(x^{15}-1\right) / g(x)=x^{7}+x^{6}+x^{4}+1$.
The three different shift-register encoders are:
(1) The non-systematic encoder of the form in figure 8.1, "Chapter 8 " handout.
(2) The systematic encoder of the form in figure 8.5 , "Chapter 8 " handout.
(3) The systematic encoder of the form in figure 8.7, "Chapter 8 " handout.

Problem 4.

(a)

$$
\begin{aligned}
& A=\left(\begin{array}{llllllllllllllllllllllllll}
1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 1 \\
1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 1
\end{array}\right) \\
& \mathrm{H}=\left[\mathrm{A} \mid \mathrm{I}_{5}\right] \\
& \text { (b) The decoding circuit is of the form in figure } 8.8, ~ " C h a p t e r ~ \\
& 8 \text { " handout. }
\end{aligned}
$$

Problem 5.

(a) C_{k} is the dual code of the ($\mathrm{n}, \mathrm{n}-\mathrm{k}$) cyclic Hamming code, so $\mathrm{n}=2^{\mathrm{k}}-1$.
(Note: The proof needs the condition that C_{k} is the dual code of a Hamming code, without which we ca nnot complete the proof. However, the problem doesn't clearly state that you can use that condition, so I won't deduct any point for this sub-problem.)
(b) $\mathrm{n}=2^{\mathrm{k}}-1$, so $\mathrm{r}=\mathrm{n}-\mathrm{k}>\mathrm{k}$ except for the trivial case $\mathrm{k}=2$. So an encoder of the form in figure 8.7, "Chapter 8 " is preferred because it uses fewer components than the encoders in figure 8.5 or figure 8.1.
(c) The set of cyclic shifts of the first row of G 1_{1} are: $\left[x^{i} g(x)\right]_{n}(i=0,1,2, \ldots, n-1)$, each of which is a non -zero codeword. Since there are exactly $2 \quad{ }^{k}$ - 1 non -zero codewords, and $n=2^{k}-1$, we just need to prove that no two distinct cyclic shifts of the first row are the same. And we prove it by contradiction.
WLOG, suppose there exist i and j s.t. $0 \leq i<j \leq n-1,\left[x^{i} g(x)\right]_{n}=\left[x^{j} g(x)\right]_{n}$.
Then $\left[x^{j} g(x)-x^{i} g(x)\right]_{n}=0 \Rightarrow\left(x^{n}-1\right)\left|\left(x^{j} g(x)-x^{i} g(x)\right) \Rightarrow g(x) h(x)\right| x^{i}\left(x^{j-i}-1\right) g(x)$
$\Rightarrow h(x) \mid x^{i}\left(x^{j-i}-1\right)$. Since $h(x)$ is primitive, $h(x)$ is irreducible. So either $h(x) \mid x^{i}$ or $h(x) \mid\left(x^{j-1}-1\right)$. However, since $h(x)$ is primitive, and $0<j-i<n=2^{k}-1, h(x)$ can divide neither x^{i} nor $\mathrm{x}^{\mathrm{j}-\mathrm{i}}-1$. So there is a contradiction.

For C_{4} with $\mathrm{h}(\mathrm{x})=\mathrm{x}^{4}+\mathrm{x}+1, \mathrm{~g}(\mathrm{x})=\mathrm{x}^{11}+\mathrm{x}^{8}+\mathrm{x}^{7}+\mathrm{x}^{5}+\mathrm{x}^{3}+\mathrm{x}^{2}+\mathrm{x}+1$. So the first row of G_{1} is [111101011001000]. By listing all the 15 non -zero codewords we found that they are just the 15 cyclic shifts of the first row of G_{1}.
(d) Since C_{k} is a simplex code, all its non -zero codewords have weight $(\mathrm{n}+1) / 2$. So the weight enumerator is:

$$
\mathrm{A}(\mathrm{z})=1+\left(2^{\mathrm{k}}-1\right) \mathrm{z}^{(\mathrm{n}+1) / 2}
$$

Problem 6.

For $b=1$, there are n ordinary bursts of length b.
For $2 \leq b \leq n$, there are $n-b+1$ possibilities for the location of the ordinary burst. The $b-2$ bits between the first 1 and last 1 in the burst pattern can be arbitrary, and there are $2^{\mathrm{b}-2}$ such strings. So the number of ordinary bursts is $(\mathrm{n}-\mathrm{b}+1) 2^{\mathrm{b}-2}$.

