HW3 Solution

1 Problem 1

Sol: Without inverting two bits, the all-low gross error would be interpreted as the all-zero codeword; we cannot invert only 1 bit since then the all-low gross error would be recognized as a single error corruption of the all-zero codeword and then would be corrected to the all-zero codeword. On the other hand, inverting two bits will guarantee that both all-low and all-high gross errors would be detected but not corrected, which is what we want.

2 Problem 2

Sol: a) Use the sphere bound:

$$
\begin{equation*}
2^{k} V_{2}(n, 2) \leq 2^{n} \tag{1}
\end{equation*}
$$

A little manipulation gives us:

$$
\begin{equation*}
2^{r+1} \geq(k+r)^{2}+(k+r)+2 \tag{2}
\end{equation*}
$$

b) For a $(n, k, 6)$ code, if we delete the first bit of each codeword, we obtain a ($n-1, k, \geq 5$) code. Hence, by the sphere bound, we have:

$$
\begin{equation*}
2^{k} V_{2}(n-1,2) \leq 2^{n-1} . \tag{3}
\end{equation*}
$$

So,

$$
\begin{equation*}
2^{r} \geq(k+r)^{2}-(k+r)+2 . \tag{4}
\end{equation*}
$$

c) For $k=32$, if $d=5, r \geq 10$; if $d=6, r \geq 11$.

3 Problem 3

Remark: Everyone figured out that one should prove each non-zero codeword has weight 2^{m-1}, but not everyone succeeded. There are several good ways to prove this fact. In the following I give out what I think two best ways.

1) (submitted by Ling Li.) First notice columns of G are all distinct nonzero
vertos of length m. For a message $x \neq 0$, there is at least one column vector g such that $x g=1$. Then we pair all column vectors of G other than g by the following way,

$$
\begin{equation*}
g^{\prime} \leftrightarrow g^{\prime}+g . \tag{5}
\end{equation*}
$$

Clearly if $x g^{\prime}=1$, then $x\left(g^{\prime}+g\right)=0$, and vice versa. So the weight of $x G$ is

$$
\begin{equation*}
1+\frac{\left(2^{m}-1\right)-1}{2}=2^{m-1} \tag{6}
\end{equation*}
$$

2) For a message $x=\left(x_{1}, x_{2}, \ldots, x_{m}\right) \neq 0$, assume that i_{0} is the first i such that $x_{i}=1$. Now we pair up all column vectors of G by the following way: g_{1} and g_{2} make a pair if and only if they are the same except at position i_{0}. In such pairing, only one vector, namely $g_{0}=(0, \ldots, 1,0, \ldots, 0)$ where the 1 is at i_{0}, is left out. Clearly for a pair g_{1} and $g_{2}, x g_{1}+x g_{2}=1$. Since $x g_{0}=1$, we have the weight of $x G$ is:

$$
\begin{equation*}
1+\frac{\left(2^{m}-1\right)-1}{2}=2^{m-1} \tag{7}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
A(z)=1+\left(2^{m}-1\right) z^{2^{m}-1} \tag{8}
\end{equation*}
$$

4 Problem 4

Sol: Plug into MacWilliams identity, simplify a little, it's straightforward to obtain:

$$
\begin{equation*}
B_{3}=\frac{\left(2^{m}-1\right)\left(2^{m-1}-1\right)}{3} \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
B_{4}=\frac{\left(2^{m}-1\right)\left(2^{m-1}-1\right)\left(2^{m-2}-1\right)}{3} \tag{10}
\end{equation*}
$$

5 Problem 5

Sol: $10^{6} \bmod 168=64$, which amounts to 2 days and 16 hours. For simplicity, let's represent this by $(2,16)$. And we represent Wednesday noon by $(3,12)$. a) $(3,12)+(2,16)=(6,4)$, so its Saturday 4 am . b) $(3,12)-(2,16)=(0,20)$, so its Sunday 8 pm .

