EE/Ma 127a Error-Correcting Codes
draft of October 18, 2000
R. J. McEliece

162 Moore

Homework Assignment 3 (FINAL VERSION)
Due (in class) 9am October 20, 2000
Reading: Handouts "TI ECC chip data sheet," and "MacWilliams Identities." Wicker, pp. 74-76.

Problems to Hand In:

Problem 1. In the handout data sheet describing the TI ECC chip, on page 7-467, we read ". . . two of the check bits, bits CB0 and CB1, are inverted to ensure that the gross-error condition of all lows and all highs is detected." Explain this remark.

Problem 2. In class on Oct. 13, I derived lower bounds on the redundancy r for a singleerror correcting $(d=3)$ and a single error correcting, double error detecting $(d=4)$ linear code, in terms of the dimension k. In this problem you are supposed to derived similar (but more complicated) for the cases $d=5$ and $d=6$.
(a) Derive such a lower bound for $d=5$ codes.
(b) Derive such a lower bound for $d=6$ codes.
(c) Apply your bounds to estimate the least redundancy needed for a $k=32$ code if $d=5$ or $d=6$.

Problem 3. Find the weight enumerator for the so-called "simplex" code, i.e., the ($2^{m}-$ $1, m)$ code which is dual to the $\left(2^{m}-1,2^{m}-1-m\right)$ Hamming code. [Hint: Use the fact that the columns for the $m \times\left(2^{m}-1\right)$ generator matrix for the code are all the distinct nonzero vectors of length m.]

Problem 4. Using the result of Problem 3, and the MacWilliams identies, find a formula for the number of words of weight 3 and 4 in the general $\left(2^{m}-1,2^{m}-1-m\right)$ Hamming code.

Problem 5. It is now noon on Wednesday.
(a) What time of day will it be a million hours from now? What day of the week?
(b) Same question, a million hours ago?

