EE/Ma 127a Error-Correcting Codes draft of October 11, 2000 Homework Assignment 2 (Final Version) Due (in class) 9am October 13, 2000 R. J. McEliece 162 Moore

Reading: Wicker, Chapter 4, Section 4.1 (pp. 69–81).

Problems to Hand In:

Problem 1. Desribe the parity-check matrix, and an appropriate decoding algorithm, for an (n, 32) binary linear code that is capable of detecting all error patterns of weight ≤ 3 , with n as small as possible.

Problem 2. Wicker, Problem 4.8 (p. 97) parts 9(a) and (b) only. Note: The minimum distance of a linear code is the same as the minimum weight among all (nonzero) codewords.

Problem 3. In class on Oct. 9, I showed that for the binary symmetric channel, maximum likelihood decoding (i.e., find the codeword x_i for which $p(y|x_i)$ is largest) is the same as minimum (Hamming) distance decoding (i.e., find the codeword x_i for which $d_H(x_i, y)$ is smallest). In this problem you are supposed to find a similar simplification of ML decoding for two other channel models: the binary erasure channel and the Z-channel. The input-output transition probabilities for the channels are as follows, where p is a number between 0 and 1/2.

(a) The binary erasure channel:

$$\begin{array}{cccc}
0 & 1 & ?\\
0 & (1-p & 0 & p\\
1 & 0 & 1-p & p
\end{array}$$

(b) The Z-channel:

$$\begin{array}{ccc}
0 & 1 \\
0 & \left(\begin{array}{cc}
1 & 0 \\
p & 1-p
\end{array}\right).$$

Problem 4. Consider the (8, 4) binary linear code described in Homework Assignment 1, Problem 2.

(a) What is the minimum distance of the code?

(b) Suppose the code is used with a bounded distance decoder, as described in class on October 11, with t = 0, and the channel is a binary symmetric channel with crossover probability p. As a function of p, what is the probability of decoder *error*?