EE/Ma 127a Error-Correcting Codes
draft of October 11, 2000
R. J. McEliece

162 Moore

Homework Assignment 2 (Final Version)
Due (in class) 9am October 13, 2000
Reading: Wicker, Chapter 4, Section 4.1 (pp. 69-81).

Problems to Hand In:

Problem 1. Desribe the parity-check matrix, and an appropriate decoding algorithm, for an $(n, 32)$ binary linear code that is capable of detecting all error patterns of weight ≤ 3, with n as small as possible.

Problem 2. Wicker, Problem 4.8 (p. 97) parts 9 (a) and (b) only. Note: The minimum distance of a linear code is the same as the minimum weight among all (nonzero) codewords.

Problem 3. In class on Oct. 9, I showed that for the binary symmetric channel, maximum likelihood decoding (i.e., find the codeword \boldsymbol{x}_{i} for which $p\left(\boldsymbol{y} \mid \boldsymbol{x}_{i}\right)$ is largest) is the same as minimum (Hamming) distance decoding (i.e., find the codeword \boldsymbol{x}_{i} for which $d_{H}\left(\boldsymbol{x}_{i}, \boldsymbol{y}\right)$ is smallest). In this problem you are supposed to find a similar simplification of ML decoding for two other channel models: the binary erasure channel and the Z-channel. The inputoutput transition probabilities for the channels are as follows, where p is a number between 0 and $1 / 2$.
(a) The binary erasure channel:

$$
\begin{gathered}
\\
0 \\
1
\end{gathered}\left(\begin{array}{ccc}
0 & 1 & ? \\
1-p & 0 & p \\
0 & 1-p & p
\end{array}\right)
$$

(b) The Z-channel:

$$
\begin{gathered}
\\
0 \\
1
\end{gathered}\left(\begin{array}{cc}
0 & 1 \\
1 & 0 \\
p & 1-p
\end{array}\right) .
$$

Problem 4. Consider the $(8,4)$ binary linear code described in Homework Assignment 1, Problem 2.
(a) What is the minimum distance of the code?
(b) Suppose the code is used with a bounded distance decoder, as described in class on October 11, with $t=0$, and the channel is a binary symmetric channel with crossover probability p. As a function of p, what is the probabiity of decoder error?

