Homework Assignment 1, Solutions

Problem 1. The parity-check matrix for the $(7,4)$ Hamming code is:

$$
H=\left(\begin{array}{lllllll}
1 & 1 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right)
$$

For each codeword ($\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}, \mathrm{x}_{5}, \mathrm{x}_{6}, \mathrm{x}_{7}$), we have:

$$
\begin{equation*}
x_{1} h_{1}+x_{2} h_{2}+x_{3} h_{3}+x_{4} h_{4}+x_{5} h_{5}+x_{6} h_{6}+x_{7} h_{7}=0 \tag{1}
\end{equation*}
$$

When $\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}, \mathrm{x}_{\mathrm{k}}$ are erased, from equation (1) we get:

$$
\begin{equation*}
\mathrm{x}_{\mathrm{i}} \mathrm{~h}_{\mathrm{i}}+\mathrm{x}_{\mathrm{j}} \mathrm{~h}_{\mathrm{j}}+\mathrm{x}_{\mathrm{k}} \mathrm{~h}_{\mathrm{k}}=\mathrm{C} \tag{2}
\end{equation*}
$$

Here C is a constant vector determined by the four known symbols in the codeword.
Equation (2) has a unique solution if and only if h_{i}, h_{j}, h_{k} are linearly independent. Since all the $h_{i}(i=1,2, \ldots, 7)$ are none-zero and distinct, equation (2) has a unique solution if and only if:

$$
\begin{equation*}
\mathrm{h}_{\mathrm{i}}+\mathrm{h}_{\mathrm{j}}+\mathrm{h}_{\mathrm{k}} \neq 0 \tag{3}
\end{equation*}
$$

By equation (3) we found that of all the 35 erasure patterns (i, j, k), the following 7 patterns:
$(1,2,4),(1,3,7),(2,3,6),(3,4,5),(1,5,6),(2,5,7),(4,6,7)$
cannot be corrected. All the other $35-7=28$ erasure patterns can be corrected.
Problem 2. A basis for the nullspace for the $(8,4)$ binary linear code consists of four linearly independent vectors all orthogonal to the four row vectors of generator matrix G . Here the four row vectors of G happen to be such a basis.

Problem 3.

(a) The row-reduced echelon generator matrix for C is:

$$
\left(\begin{array}{llllll}
1 & 0 & 1 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 1
\end{array}\right)
$$

(b) The codeword corresponding to any triple-symbol set $\left(\mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{3}\right)$ generated by the row-reduced echelon generator matrix in (a) is:

$$
\left(\mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{1}+\mathrm{u}_{2}, \mathrm{u}_{3}, \mathrm{u}_{1}+\mathrm{u}_{3}, \mathrm{u}_{1}+\mathrm{u}_{2}+\mathrm{u}_{3}\right)
$$

So a parity-check matrix for C is:

$$
H=\left(\begin{array}{llllll}
1 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 \\
1 & 1 & 0 & 1 & 0 & 1
\end{array}\right)
$$

Problem 4.

(a)

\mathbf{k}	1	2	3	4	5	6	7
$\left[\begin{array}{l}7 \\ k\end{array}\right]_{2}$	127	2667	11811	11811	2667	127	1

(b) Let $\mathrm{q}=1+\delta$, then

$$
\begin{aligned}
& \lim _{q \rightarrow 1}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\lim _{q \rightarrow 1} \prod_{i=0}^{k-1} \frac{q^{n}-q^{i}}{q^{k}-q^{i}}=\lim _{q \rightarrow 1} \prod_{i=0}^{k-1} \frac{q^{n-i}-1}{q^{k-i}-1}=\lim _{\delta \rightarrow 0} \prod_{i=0}^{k-1} \frac{(1+\delta)^{n-i}-1}{(1+\delta)^{k-i}-1}=\lim _{\delta \rightarrow 0} \prod_{i=0}^{k-1} \frac{1+(n-i) \delta+o(\delta)-1}{1+(k-i) \delta+o(\delta)-1} \\
& =\prod_{i=0}^{k-1} \frac{n-i}{k-i}=\binom{n}{k}
\end{aligned}
$$

Problem 5.

(a) Parity-check matrix $H=\left(h_{1} h_{2} h_{3} \ldots h_{n}\right)$, here each $h_{i}(i=1,2,3, \ldots, n)$ is a $r \times 1$ vector. In order to be able to correct all single bit errors, all the h_{i} should be different and none of them is an all-zero vector. So

$$
2^{\mathrm{r}}-1 \geq \mathrm{n}
$$

Here $n=k+r=32+r$. So $r \geq 6$.
Now to detect all double bit errors, no $\quad h_{i}+h_{j}(i, j=1,2, \ldots, n . i \neq j)$ can be the all-zero vector or any of the n column vectors of H. Fix i and it's easy to see that $h_{i}+h_{j}$ $(j=1,2, \ldots, n . j \neq i)$ can take on $n-1$ values. So

$$
2^{\mathrm{r}}-1 \geq \mathrm{n}+(\mathrm{n}-1)
$$

From that equation we get $\mathrm{r} \geq 7$. So n is at least 39. The code can be achieved by first designing a $(38,32)$ code and then extending it to be a $(39,32)$ code.
(b) A parity-check matrix for the $(39,32)$ code is:

$$
H=\left(h_{1} h_{2} h_{3} \ldots h_{39}\right)
$$

Here all the $h_{i}(i=1,2, \ldots, 39)$ are distinct 7×1 vectors, and each h_{i} 's last entry is 1 .

