EE/Ma 127a Error-Correcting Codes
draft of December 11, 2000
R. J. McEliece

162 Moore

Solutions to Final Examination

Problem 1.

Each of the $n+1$ error patterns must produce a distinct syndrome, and there are 2^{r} possible syndromes, so we have $2^{r} \geq n+1$. Since r must also be an integer, a necessary condition for the existence of a code with the desired error-correction capabilities is

$$
\begin{equation*}
r \geq\left\lceil\log _{2}(n+1)\right\rceil \tag{1}
\end{equation*}
$$

The inequality (1) is also sufficient, as we can see as follows. If $2^{r} \geq n+1$, we can construct an $r \times n$ "Hamming" parity-check matrix of the form

$$
H=\left(\begin{array}{llll}
h_{1} & h_{2} & \cdots & h_{n}
\end{array}\right),
$$

where the columns h_{1}, \ldots, h_{n} of H are n distinct r-vectors. What we want to do is convert H into an $r \times n$ matrix H^{\prime} of the form

$$
H^{\prime}=\left(\begin{array}{llll}
h_{1}^{\prime} & h_{2}^{\prime} & \cdots & h_{n}^{\prime}
\end{array}\right),
$$

such that

$$
\begin{aligned}
h_{n}^{\prime} & =h_{n} \\
h_{n}^{\prime}+h_{n-1}^{\prime} & =h_{n-1} \\
\vdots & \\
h_{1}^{\prime}+\cdots+h_{n}^{\prime} & =h_{1},
\end{aligned}
$$

which will guarantee that the syndromes of the given error patterns are distinct. This is easy to do. Indeed, if we define the columns of H^{\prime} recursively as follows:

$$
\begin{aligned}
h_{n}^{\prime} & =h_{n} \\
h_{n-1}^{\prime} & =h_{n}+h_{n-1} \\
\vdots & \\
h_{1}^{\prime} & =h_{2}+h_{1},
\end{aligned}
$$

the desired relationship will hold. For example with $n=7$ and $r=3$, if we choose $h_{7}=001$, $h_{6}=010, \ldots, h_{1}=111$, the resulting matrix H^{\prime} is

$$
H^{\prime}=\left(\begin{array}{lllllll}
0 & 0 & 0 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}\right)
$$

Problem 2.

(a) The syndromes of the 15 correctable bursts are 0 (for no errors), $x^{i} \bmod g(x)$ for $i=0, \ldots, 6$ (the single bit errors), and $x^{i}(x+1) \bmod g(x)$ for $i=0, \ldots, 6$ (the bursts of length 2). By actual calculation, we find that the only polynomial of degree ≤ 3 which is not of this form is $x^{3}+x+1$. Thus the missing syndrome is $S(x)=x^{3}+x+1$.
(b) The minimum weight is 3-see part (c).
(c) If $R(x) \bmod \left(x^{4}+x^{3}+x^{2}+1\right)=x^{3}+x+1$, then $R(x) \bmod \left(x^{3}+x+1\right)=0$ and $R(x) \bmod (x+1)=1$. Thus $R(x)$ is an odd weight codeword in the $(7,4)$ cyclic code with generator polynomial $x^{3}+x+1$. This set consists of the seven cyclic shifts of 1101000 , plus the vector 1111111.

Problem 3.

(a) If the decoder is given a vector R which is distance 3 from the transmitted codeword A, it will make an error iff it can find a codeword $B \neq A$ with $d(R, B)=0,1$, or 2 . $d(R, B)=0$ and 1 are impossible by the triangle inequality, and $d(R, B)=2$ is possible iff $d(A, B)=5$. But according to the given weight enumerator, each codeword A has exactly 18 distance- 5 neighbors B. For each such B there are $\binom{5}{3}=10$ possible R 's with $d(A, R)=3$ and $d(R, B)=2$. Thus the total of "bad" weight 3 error patterns is

$$
\binom{5}{3} A_{5}=10 \times 18=180
$$

(b) If the decoder starts with a vector R which is distance 4 from a codeword A, it will make an error iff it can find a codeword $B \neq A$ with $d(R, B)=0,1$, or $2 . d(R, B)=0$ is impossible (why?). $d(R, B)=1$ is only possible if $d(A, B)=5$, in which case there are $\binom{5}{4}=5 R$'s with $d(A, R)=4$ and $d(R, B)=1 . d(R, B)=2$ is possible only if $d(A, B)=6$, , in which case there are $\binom{6}{4}=15 R$'s with $d(A, R)=4$ and $d(R, B)=2$. Thus the total number of "bad" error patterns of weight 4 is

$$
\binom{5}{4} A_{5}+\binom{6}{4} A_{6}=5 \cdot 18+15 \cdot 30=540 .
$$

Problem 4. The columns of the parity-check matrix for a Hamming code of length $2^{m}-1$ must be the $2^{m}-1$ nonzero m-vectors is some order, so there are ($2^{m}-1$)! possible H 's. However, each code has $\left(2^{m}-1\right)\left(2^{m}-2\right) \cdots\left(2^{m}-2^{m-1}\right)$ parity-check matrices, so there are a total of

$$
\frac{\left(2^{m}-1\right)!}{\left(2^{m}-1\right)\left(2^{m}-2\right) \cdots\left(2^{m}-2^{m-1}\right)}
$$

such codes.
Problem 5. The z entry in the x row of the addition table is $x+z$. Similarly the z entry of the y row of the multiplication table is $y z$. The question, therefore, is this: For a fixed
x and y, how many solutions z are there to the equation $x+z=y z$? Rearranging the equation we get

$$
z(y+1)=x .
$$

If $y+1 \neq 0$, i.e., $y \neq 1$, we can divide by $y+1$ and obtain $z=x /(y+1)$ as the unique solution. On the other hand, if $y+1=0$, i.e., $y=1$, then the equation is $z \cdot 0=x$, which is either true for all z 's (when $x=0$) of no z 's, (when $x \neq 0$). In summary:

$$
\text { no. of matches }= \begin{cases}1 & \text { if } y \neq 1 \\ 0 & \text { if } y=1 \text { and } x \neq 0 \\ 16 & \text { if } y=1 \text { and } x=0\end{cases}
$$

