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Abstract

We present a reduction framework from ordinal regression to binary classification
based on extended examples. The framework consists of three steps: extracting
extended examples from the original examples, learning a binary classifier on the
extended examples with any binary classification algorithm, and constructing a
ranking rule from the binary classifier. A weighted 0/1 loss of the binary classi-
fier would then bound the mislabeling cost of the ranking rule. Our framework
allows not only to design good ordinal regression algorithms based on well-tuned
binary classification approaches, but also to derive new generalization bounds for
ordinal regression from known bounds for binary classification. In addition, our
framework unifies many existing ordinal regression algorithms, such as percep-
tron ranking and support vector ordinal regression. When compared empirically
on benchmark data sets, some of our newly designed algorithms enjoy advantages
in terms of both training speed and generalization performance over existing al-
gorithms, which demonstrates the usefulness of our framework.

1 Introduction

We work on a type of supervised learning problems calledrankingor ordinal regression, where ex-
amples are labeled by an ordinal scale called therank. For instance, the rating that a customer gives
on a movie might be one ofdo-not-bother , only-if-you-must , good , very-good , and
run-to-see . The ratings have a natural order, which distinguishes ordinal regression from gen-
eral multiclass classification.

Recently, many algorithms for ordinal regression have been proposed from a machine learning per-
spective. For instance, Crammer and Singer [1] generalized the online perceptron algorithm with
multiple thresholds to do ordinal regression. In their approach, a perceptron maps an input vector
to a latent potential value, which is then thresholded to obtain a rank. Shashua and Levin [2] pro-
posed new support vector machine (SVM) formulations to handle multiple thresholds. Some other
formulations were studied by Rajaram et al. [3] and Chu and Keerthi [4]. All these algorithms share
a common property: they are modified from well-known binary classification approaches.

Since binary classification is much better studied than ordinal regression, a general framework to
systematically reduce the latter to the former can introduce two immediate benefits. First, well-tuned
binary classification approaches can be readily transformed into good ordinal regression algorithms,
which saves immense efforts in design and implementation. Second, new generalization bounds for
ordinal regression can be easily derived from known bounds for binary classification, which saves
tremendous efforts in theoretical analysis.

In this paper, we propose such a reduction framework. The framework is based on extended ex-
amples, which are extracted from the original examples and a given mislabeling cost matrix. The
binary classifier trained from the extended examples can then be used to construct a ranking rule.
We prove that the mislabeling cost of the ranking rule is bounded by a weighted 0/1 loss of the
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binary classifier. Hence, binary classifiers that generalize well could introduce ranking rules that
generalize well. The advantages of the framework in algorithmic design and in theoretical analysis
are both demonstrated in the paper. In addition, we show that our framework provides a unified
view for many existing ordinal regression algorithms. The experiments on some benchmark data
sets validate the usefulness of our framework in practice.

The paper is organized as follows. In Section 2, we introduce our reduction framework. An uni-
fied view of some existing algorithms based on the framework is discussed in Section 3. Theo-
retical guarantee on the reduction, including derivations of new generalization bounds for ordinal
regression, is provided in Section 4. We present experimental results of several new algorithms in
Section 5, and conclude in Section 6.

2 The reduction framework

In an ordinal regression problem, an example(x, y) is composed of an input vectorx ∈ X and an
ordinal label (i.e., rank)y ∈ Y = {1, 2, . . . ,K}. Each example is assumed to be drawn i.i.d. from
some unknown distributionP (x, y) onX ×Y. The generalization error of a ranking ruler : X → Y
is then defined as

C(r, P ) def= E
(x,y)∼P

Cy,r(x) ,

whereC is aK ×K cost matrix withCy,k being the cost of predicting an example(x, y) as rankk.
Naturally we assumeCy,y = 0 andCy,k > 0 for k 6= y. Given a training setS = {(xn, yn)}N

n=1
containingN examples, the goal is to find a ranking ruler that generalizes well, i.e., associates with
a smallC(r, P ).

The setting above looks similar to that of a multiclass classification problem, except that the ranks are
ordered. The ordinal information can be interpreted in several ways. In statistics, the information is
assumed to reflect a stochastic ordering on the conditional distributionsP (y ≤ k | x) [5]. Another
interpretation is that the mislabeling cost depends on the “closeness” of the prediction. Consider
an example(x, 4) with r1(x) = 3 andr2(x) = 1. The ruler2 should pay more for the erroneous
prediction than the ruler1. Thus, we generally want each row ofC to beV-shaped. That is,Cy,k−1 ≥
Cy,k if k ≤ y andCy,k ≤ Cy,k+1 if k ≥ y.

A simpleC with V-shaped rows is theclassification cost matrix, with entriesCy,k = Jy 6= kK.1 The
classification cost is widely used in multiclass classification. However, because the cost is invariant
for all kinds of mislabelings, the ordinal information is not taken into account. Theabsolute cost
matrix, which is defined byCy,k = |y − k|, is a popular choice that better reflects the ordering
preference. Its rows are not only V-shaped, but alsoconvex. That is,Cy,k+1 − Cy,k ≥ Cy,k − Cy,k−1

for 1 < k < K. The convex rows encode a stronger preference in making the prediction “close.”

In this paper, we shall always assume that the ordinal regression problem under study comes with a
cost matrix of V-shaped rows, and discuss how to reduce the ordinal regression problem to a binary
classification problem. Some of the results may require the rows to be convex.

2.1 Reducing ordinal regression to binary classification

The ordinal information allows ranks to be compared. Consider, for instance, that we want to know
how good a moviex is. An associated question would be: “is the rank ofx greater thank?” For
a fixedk, such a question is exactly a binary classification problem, and the rank ofx can be de-
termined by asking multiple questions fork = 1, 2, until (K − 1). Frank and Hall [6] proposed
to solve each binary classification problem independently and combine the binary outputs to a rank.
Although their approach is simple, the generalization performance using the combination step can-
not be easily analyzed.

Our framework works differently. First, all the binary classification problems are solved jointly to
obtain a single binary classifier. Second, a simpler step is used to convert the binary outputs to a
rank, and generalization analysis can immediately follow.

1The Boolean testJ·K is 1 if the inner condition is true, and0 otherwise.
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Assume thatfb(x, k) is a binary classifier for all the associated questions above.Consistentanswers
would befb(x, k) = 1 (“yes”) for k = 1 until (y′ − 1) for somey′, and0 (“no”) afterwards. Then,
a reasonable ranking rule based on the binary answers isr(x) = y′ = 1 + min {k : fb(x, k) = 1}.
Equivalently,

r(x) def= 1 +
K−1∑
k=1

fb(x, k).

Although the definition can be flexibly applied even whenfb is not consistent, a consistentfb is
usually desired in order to introduce a good ranking ruler.

Furthermore, the ordinal information can help to model the relative confidence in the binary out-
puts. That is, whenk is farther from the rank ofx, the answerfb(x, k) should be more confi-
dent. The confidence can be modeled by a real-valued functionf : X × {1, 2, . . . ,K − 1} → R,
with fb(x, k) = Jf(x, k) > 0K and the confidence encoded in the magnitude off . Accordingly,

r(x) def= 1 +
K−1∑
k=1

Jf(x, k) > 0K. (1)

The ordinal information would naturally requiref to berank-monotonic, i.e.,f(x, 1) ≥ f(x, 2) ≥
· · · ≥ f(x,K − 1) for every x. Note that a rank-monotonic functionf introduces consistent
answersfb. Again, although the construction (1) can be applied to cases wheref is not rank-
monotonic, a rank-monotonicf is usually desired.

Whenf is rank-monotonic, we havef(x, k) > 0 for k < r(x), andf(x, k) ≤ 0 for k ≥ r(x). Thus
the cost of the ranking ruler on an example(x, y) is

Cy,r(x) =
K−1∑

k=r(x)

(Cy,k − Cy,k+1) + Cy,K =
K−1∑
k=1

(Cy,k − Cy,k+1) Jf(x, k) ≤ 0K + Cy,K . (2)

Define the extended examples(x(k), y(k)) with weightswy,k as

x(k) = (x, k), y(k) = 2Jk < yK− 1, wy,k = |Cy,k − Cy,k+1| . (3)

Because rowy in C is V-shaped, the binary variabley(k) equals the sign of(Cy,k − Cy,k+1) if the
latter is not zero. Continuing from (2),

Cy,r(x) =
y−1∑
k=1

wy,k · y(k)Jf(x(k)) ≤ 0K +
K−1∑
k=y

wy,k · y(k)
(
1− Jf(x(k)) > 0K

)
+ Cy,K

=
y−1∑
k=1

wy,kJy(k)f(x(k)) ≤ 0K + Cy,y +
K−1∑
k=y

wy,kJy(k)f(x(k)) < 0K

≤
K−1∑
k=1

wy,kJy(k)f(x(k)) ≤ 0K. (4)

Inequality (4) shows that the cost ofr on example(x, y) is bounded by a weighted 0/1 loss off on
the extended examples. It becomes an equality if the degenerate casef(x(k)) = 0 does not happen.

Whenf is not rank-monotonic but rowy of C is convex, the inequality (4) could be alternatively
proved from

K−1∑
k=r(x)

(Cy,k − Cy,k+1) ≤
K−1∑
k=1

(Cy,k − Cy,k+1) Jf(x(k)) ≤ 0K.

The inequality above holds because(Cy,k − Cy,k+1) is decreasing due to the convexity, and there
are exactly(r(x)− 1) zeros and(K − r(x)) ones in the values ofJf(x(k)) ≤ 0K in (1).

Altogether, our reduction framework consists of the following steps: we first use (3) to transform
all training examples(xn, yn) to extended examples(x(k)

n , y
(k)
n ) with weightswyn,k (also denoted

asw
(k)
n ). All the extended examples would then be jointly learned by a binary classifierf with

confidence outputs, aiming at a low weighted 0/1 loss. Finally, a ranking ruler is constructed
from f using (1). The cost bound in (4) leads to the following theorem.
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Theorem 1 (reduction) An ordinal regression problem with a V-shaped cost matrixC can be re-
duced to a binary classification problem with the extended examples in (3) and the ranking ruler
in (1). If f is rank-monotonic or every row ofC is convex, for any example(x, y) and its extended
examples(x(k), y(k)), the weighted sum of the 0/1 loss off(x(k)) bounds the cost ofr(x).

2.2 Thresholded model

From Theorem 1 and the illustrations above, a rank-monotonicf is preferred for our framework. A
popular approach to obtain such a functionf is to use a thresholded model [1, 4, 5, 7]:

f(x, k) = g(x)− θk.

As long as the threshold vectorθ is ordered, i.e., θ1 ≤ θ2 ≤ · · · ≤ θK−1, the functionf is
rank-monotonic. The question is then, “when can a binary classification algorithm return ordered
thresholds?” A mild but sufficient condition is shown as follows.

Theorem 2 (ordered thresholds) If every row of the cost matrix is convex, and the binary classifi-
cation algorithm minimizes the loss

Λ(g) +
N∑

n=1

K−1∑
k=1

w(k)
n · `

(
y(k)

n (g(xn)− θk)
)

, (5)

where`(ρ) is non-increasing inρ, there exists an optimal solution(g∗,θ∗) such thatθ∗ is ordered.

PROOF For an optimal solution(g,θ), assume thatθk > θk+1 for somek. We shall prove that
switchingθk andθk+1 would not increase the objective value of (5). First, consider an example
with yn = k + 1. Sincey

(k)
n = 1 andy

(k+1)
n = −1, switching the thresholds changes the objective

value by

w(k)
n [`(g(xn)− θk+1)− `(g(xn)− θk)] + w(k+1)

n [`(θk − g(xn))− `(θk+1 − g(xn))] . (6)

Becausè(ρ) is non-increasing, the change is non-positive.

For an example withyn < k + 1, we havey(k)
n = y

(k+1)
n = −1. The change in the objective is

(w(k)
n − w(k+1)

n ) [`(θk+1 − g(xn))− `(θk − g(xn))] .

Note that rowyn of the cost matrix being convex leads tow
(k)
n ≤ w

(k+1)
n if yn < k + 1. Since`(ρ)

is non-increasing, the change above is also non-positive. The case for examples withyn > k + 1 is
similar and the change there is also non-positive.

Thus, by switching adjacent pairs of strictly decreasing thresholds, we can actually obtain a solu-
tion (g∗,θ∗) with a smaller or equal objective value in (5), andg∗ = g. The optimality of(g,θ)
shows that(g∗,θ∗) is also optimal. �

Note that if`(ρ) is strictly decreasing forρ < 0, and there are training examples for every rank, the
change (6) is strictly negative. Thus, the optimalθ∗ for anyg∗ is always ordered.

3 Algorithms based on the framework

So far the reduction works only by assuming thatx(k) = (x, k) is a pair understandable byf .
Actually, any lossless encoding from(x, k) to a vector can be used to encode the pair. With proper
choices of the cost matrix, the encoding scheme of(x, k), and the binary learning algorithm, many
existing ordinal regression algorithms can be unified in our framework. In this section, we will
briefly discuss some of them. It happens that a simple encoding scheme for(x, k) via a coding
matrix E of (K − 1) rows works for all these algorithms. To formx(k), the vectorek, which
denotes thek-th row ofE, is appended afterx. We will mostly work withE = γIK−1, whereγ is
a positive scalar andIK−1 is the(K − 1)× (K − 1) identity matrix.

868



3.1 Perceptron-based algorithms

The perceptron ranking (PRank) algorithm proposed by Crammer and Singer [1] is an online ordinal
regression algorithm that employs the thresholded model withf(x, k) = 〈u,x〉 − θk. Whenever a
training example is not predicted correctly, the currentu andθ are updated in a way similar to the
perceptron learning rule [8]. The algorithm was proved to keep an orderedθ, and a mistake bound
was also proposed [1].

With the simple encoding schemeE = IK−1, we can see thatf(x, k) =
〈
(u,−θ),x(k)

〉
. Thus,

when the absolute cost matrix is taken and a modified perceptron learning rule2 is used as the under-
lying binary classification algorithm, the PRank algorithm is a specific instance of our framework.
The orderliness of the thresholds is guaranteed by Theorem 2, and the mistake bound is a direct
application of the well-known perceptron mistake bound (see for example Freund and Schapire [8]).
Our framework not only simplifies the derivation of the mistake bound, but also allows the use of
other perceptron algorithms, such as a batch-mode algorithm rather than an online one.

3.2 SVM-based algorithms

SVM [9] can be thought as a generalized perceptron with a kernel that computes the inner product
on transformed input vectorsφ(x). For the extended examples(x, k), we can suitably define the
extended kernel as the original kernel plus the inner product between the extensions,

K ((x, k), (x′, k′)) = 〈φ(x), φ(x′)〉+ 〈ek, ek′〉 .

Then, several SVM-based approaches for ordinal regression are special instances of our framework.
For example, the approach of Rajaram et al. [3] is equivalent to using the classification cost matrix,
the coding matrixE defined withe

k,i
= γ · Jk ≤ iK for someγ > 0, and the hard-margin SVM.

WhenE = γIK−1 and the traditional soft-margin SVM are used in our framework, the binary
classifierf(x, k) has the form〈u, φ(x)〉 − θk − b, and can be obtained by solving

min
u,θ,b

‖u‖2 + ‖θ‖2
/γ2 + κ

N∑
n=1

K−1∑
k=1

w(k)
n max

{
0, 1− y(k)

n (〈u, φ(xn)〉 − θk − b)
}

. (7)

The explicit (SVOR-EXP) and implicit (SVOR-IMC) approaches of Chu and Keerthi [4] can be
regarded as instances of our framework with a modified soft-margin SVM formulation (since they
excluded the term‖θ‖2

/γ2 and added some constraints onθ). Thus, many of their results can be
alternatively explained with our reduction framework. For example, their proof for orderedθ of
SVOR-IMC is implied from Theorem 2. In addition, they found that SVOR-EXP performed better
in terms of the classification cost, and SVOR-IMC preceded in terms of the absolute cost. This
finding can also be explained by reduction: SVOR-EXP is an instance of our framework using the
classification cost and SVOR-IMC comes from using the absolute cost.

Note that Chu and Keerthi paid much effort in designing and implementing suitable optimizers for
their modified formulation. If the unmodified soft-margin SVM (7) is directly used in our frame-
work with the absolute cost, we obtain a new support vector ordinal regression formulation.3 From
Theorem 2, the thresholdsθ would be ordered. The dual of (7) can be easily solved with state-of-
the-art SVM optimizers, and the formulations of Chu and Keerthi can be approximated by settingγ
to a large value. As we shall see in Section 5, even a simple setting ofγ = 1 performs similarly to
the approaches of Chu and Keerthi in practice.

4 Generalization bounds

With the extended examples, new generalization bounds can be derived for ordinal regression prob-
lems with any cost matrix. A simple result that comes immediately from (4) is:

2To precisely replicate the PRank algorithm, the(K−1) extended examples sprouted from a same example
should be considered altogether in updating the perceptron weight vector.

3The formulation was only briefly mentioned in a footnote, but not studied, by Chu and Keerthi [4].
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Theorem 3 (reduction of generalization error) Let cy = Cy,1 + Cy,K and c = maxy cy. If f is
rank-monotonic or every row ofC is convex, there exists a distribution̂P on (X, Y ), whereX
contains the encoding of(x, k) andY is a binary label, such that

E
(x,y)∼P

Cy,r(x) ≤ c · E
(X,Y )∼P̂

JY f(X) ≤ 0K.

PROOF We prove by constructinĝP . Given the conditions, following (4), we have

Cy,r(x) ≤
K−1∑
k=1

wy,kJy(k)f(x(k)) ≤ 0K = cy · E
k∼Pk

Jy(k)f(x(k)) ≤ 0K,

wherePk(k | y) = wy,k/cy is a probability distribution becausecy =
∑K−1

k=1 wy,k. Equivalently,
we can define a distribution̂P (x(k), y(k)) that generates(x(k), y(k)) by drawing the tuple(x, y, k)
from P (x, y) andPk(k | y). Then, the generalization error ofr is

E
(x,y)∼P

Cy,r(x) ≤ E
(x,y)∼P

cy · E
k∼Pk

Jy(k)f(x(k)) ≤ 0K ≤ c · E
(x(k),y(k))∼P̂

Jy(k)f(x(k)) ≤ 0K. (8)

�

Theorem 3 shows that, if the binary classifierf generalizes well when examples are sampled fromP̂ ,
the constructed ranking rule would also generalize well. The termsy(k)f(x(k)), which are exactly
the margins of the associated binary classifierfb(x, k), would be analogously called themarginsfor
ordinal regression, and are expected to be positive and large for correct and confident predictions.

Herbrich et al. [5] derived a large-margin bound for an SVM-based thresholded model using pairwise
comparisons between examples. However, the bound is complicated becauseO(N2) pairs are taken
into consideration, and the bound is restricted because it is only applicable to hard-margin cases,
i.e., for all n, the marginsy(k)

n f(x(k)
n ) ≥ ∆ > 0. Another large-margin bound was derived by

Shashua and Levin [2]. However, the bound is not data-dependent, and hence does not fully explain
the generalization performance of large-margin ranking rules in reality (for more discussions on
data-dependent bounds, see the work of, for example, Bartlett and Shawe-Taylor [10]).

Next, we show how a novel data-dependent bound for SVM-based ordinal regression approaches can
be derived from our reduction framework. Our bound includes onlyO(KN) extended examples,
and applies to both hard-margin and soft-margin cases, i.e., the marginsy(k)f(x(k)) can be negative.
Similar techniques can be used to derive generalization bounds when AdaBoost is the underlying
classifier (see the work of Lin and Li [7] for one of such bounds).

Theorem 4 (data-dependent bound for support vector ordinal regression)Assume that

f(x, k) ∈
{

f : (x, k) 7→ 〈u, φ(x)〉 − θk, ‖u‖2 + ‖θ‖2 ≤ 1, ‖φ(x)‖2 + 1 ≤ R2
}

.

If θ is ordered or every row ofC is convex, for any margin criterion∆, with probability at least1−δ,
every rank ruler based onf has generalization error no more than

β

N
·

N∑
n=1

K−1∑
k=1

w(k)
n Jy(k)

n f(x(k)
n ) ≤ ∆K + O

(
log N√

N
,
R

∆
,

√
log

1
δ

)
, whereβ =

maxy cy

miny cy
.

PROOF Consider the extended training setŜ =
{
(x(k)

n , y
(k)
n )
}

, which containsN(K−1) elements.

Each element is a possible outcome from the distributionP̂ constructed in Theorem 3. Note, how-
ever, that these elements are not all independent. Thus, we cannot directly use the whole extended
set as i.i.d. outcomes from̂P . Nevertheless, some subsets ofŜ do contain i.i.d. outcomes from̂P .
One way to extract such a subset is to choose independentkn from Pk(k | yn) for each(xn, yn).
The subset would be namedT =

{
(x(kn)

n , y
(kn)
n )

}N

n=1
.

Bartlett and Shawe-Taylor [10] showed that with probability at least(1− δ/2) over the choice ofN
i.i.d. outcomes fromP̂ , which is the case ofT ,

E
(x(k),y(k))∼P̂

Jy(k)f(x(k)) ≤ 0K ≤ 1
N

N∑
n=1

Jy(kn)
n f(x(kn)

n ) ≤ ∆K + O

(
log N√

N
,
R

∆
,

√
log

1
δ

)
. (9)
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Table 1: Test error with absolute cost
Reduction based on SVOR-IMC with kernel

data set C4.5 boost-stump SVM-perceptr. perceptron Gaussian [4]
pyrimidines 1.565± 0.072 1.360± 0.054 1.304± 0.040 1.315± 0.039 1.294± 0.046
machine 0.987± 0.024 0.875± 0.017 0.842± 0.022 0.814± 0.019 0.990± 0.026
boston 0.950± 0.016 0.846± 0.015 0.732± 0.013 0.729± 0.013 0.747± 0.011
abalone 1.560± 0.006 1.458± 0.005 1.383± 0.004 1.386± 0.005 1.361± 0.003
bank 1.700± 0.005 1.481± 0.002 1.404± 0.002 1.404± 0.002 1.393± 0.002
computer 0.701± 0.003 0.604± 0.002 0.565± 0.002 0.565± 0.002 0.596± 0.002
california 0.974± 0.004 0.991± 0.003 0.940± 0.001 0.939± 0.001 1.008± 0.001
census 1.263± 0.003 1.210± 0.001 1.143± 0.002 1.143± 0.002 1.205± 0.002

Let bn = Jy(kn)
n f(x(kn)

n ) ≤ ∆K be a Boolean random variable introduced bykn ∼ Pk(k | yn). The
variable has meanc−1

yn
·
∑K−1

k=1 w
(k)
n Jy(k)

n f(x(k)
n ) ≤ ∆K. An extended Chernoff bound shows that

when eachbn is chosen independently, with probability at least(1− δ/2) over the choice ofbn,

1
N

N∑
n=1

bn ≤
1
N

N∑
n=1

1
cyn

K−1∑
k=1

w(k)
n Jy(k)

n f(x(k)
n ) ≤ ∆K + O

(
1√
N

,

√
log

1
δ

)
. (10)

The desired result can be obtained by combining (8), (9), and (10) with a union bound. �

5 Experiments

We performed experiments with eight benchmark data sets that were used by Chu and Keerthi [4].
The data sets were produced by quantizing some metric regression data sets withK = 10. We used
the same training/test ratio and also averaged the results over20 trials. Thus, with the absolute cost
matrix, we can fairly compare our results with those of SVOR-IMC [4].

We tested our framework withE = γIK−1 and three different binary classification algorithms.
The first binary algorithm is Quinlan’s C4.5 [11]. The second is AdaBoost-stump which uses Ada-
Boost to aggregate500 decision stumps. The third one is SVM with the perceptron kernel [12],
with a simple setting ofγ = 1. Note that the Gaussian kernel was used by Chu and Keerthi [4].
We used the perceptron kernel instead to gain the advantage of faster parameter selection. The
parameterκ of the soft-margin SVM was determined by a5-fold cross validation procedure with
log2 κ = −17,−15, . . . , 3, and LIBSVM [13] was adopted as the solver. For a fair comparison, we
also implemented SVOR-IMC with the perceptron kernel and the same parameter selection proce-
dure in LIBSVM.

We list the mean and the standard error of all test results in Table 1, with entries within one standard
error of the lowest one marked in bold. With our reduction framework, all the three binary learning
algorithms could be better than SVOR-IMC with the Gaussian kernel on some of the data sets, which
demonstrates that they achieve decent out-of-sample performances. Among the three algorithms,
SVM-perceptron is significantly better than the other two.

Within the three SVM-based approaches, the two

bank computer california census
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Figure 1: Training time (including automatic
parameter selection) of the SVM-based ap-
proaches with the perceptron kernel

with the perceptron kernel are better than SVOR-
IMC with the Gaussian kernel in test performance.
Our direct reduction to the standard SVM performs
similarly to SVOR-IMC with the same perceptron
kernel, but is much easier to implement. In addi-
tion, our direct reduction is significantly faster than
SVOR-IMC in training, which is illustrated in Fig-
ure 1 using the four largest data sets.4 The main
cause to the time difference is the speedup heuris-
tics. While, to the best of our knowledge, not much

4The results are averaged CPU time gathered on a 1.7G Dual Intel Xeon machine with 1GB of memory.
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has been done to improve the original SVOR-IMC algorithm, plenty of heuristics, such as shrinking
and advanced working set selection in LIBSVM, can be seamlessly adopted by our direct reduction.
This difference demonstrates another advantage of our reduction framework: improvements to bi-
nary classification approaches can be immediately inherited by reduction-based ordinal regression
algorithms.

6 Conclusion

We presented a reduction framework from ordinal regression to binary classification based on ex-
tended examples. The framework has the flexibility to work with any reasonable cost matrix and
any binary classifiers. We demonstrated the algorithmic advantages of the framework in design-
ing new ordinal regression algorithms and explaining existing algorithms. We also showed that the
framework can be used to derive new generalization bounds for ordinal regression. Furthermore,
the usefulness of the framework was empirically validated by comparing three new algorithms con-
structed from our framework with the state-of-the-art SVOR-IMC algorithm.
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