EE/Ma 127c Error-Correcting Codes - Homework Assignment 4

Ling Li, ling@cs.caltech.edu

May 17, 2001

- **4.1** For input symbol u, the repeating symbol is $\mathbf{v} = (v_1, v_2, \dots, v_q) = (\underbrace{u, u, \dots, u}_q)$. In the junction tree of u, (u, \mathbf{v}) , and v_i $(i = 1, \dots, q)$,
 - the message from u to (u, \mathbf{v}) is $\pi(u)$, where $\pi(u)$ is the *a priori* probability of u. However, we will use the *a priori* log-likelihood for u:

$$LLR_u^{(i)} = \log \frac{\pi(u=0)}{\pi(u=1)}.$$

• The message from v_i to (u, \mathbf{v}) is (y_i^e) is the channel observed output of v_i

$$LLR_{i}^{(o)} = \log \frac{\Pr\{v_{i} = 0 | y_{i}^{e}\}}{\Pr\{v_{i} = 1 | y_{i}^{e}\}}.$$

• The message from (u, \mathbf{v}) to u is

$$\sum_{\mathbf{v}} \chi(u, \mathbf{v}) \prod_{i} \Pr\left\{ v_i | y_i^e \right\} = \prod_{i} \Pr\left\{ v_i = u | y_i^e \right\},$$

where $\chi(u, \mathbf{v})$ is the local kernel for (u, \mathbf{v}) and $\chi(u, \mathbf{v}) = 1$ iff \mathbf{v} is the repetition codeword of u. The log-likelihood version of the message is

$$\sum_{i} \operatorname{LLR}_{i}^{(o)}.$$

• The message from (u, \mathbf{v}) to v_i is

$$\sum_{j:j\neq i} \mathrm{LLR}_j^{(o)} + \mathrm{LLR}_u^{(i)}.$$

Thus

(a) An efficient APP decoding rule for the information bit is

$$APP_u = LLR_u^{(i)} + \sum_i LLR_i^{(o)},$$

i.e., sum of the *a priori* log-likelihood and the extrinsic information. And the rule for encoded bit v_i is

$$APP_{v_i} = LLR_i^{(o)} + \sum_{j:j \neq i} LLR_j^{(o)} + LLR_u^{(i)} = \sum_j LLR_j^{(o)} + LLR_u^{(i)}.$$

It is not surprising that $APP_u = APP_{v_i}$, since the encoding forces $v_i = u$.

(b) For the (6, 2) code, we have

$$APP_{u_1} = LLR_1^{(i)} + \sum_{i=1}^3 LLR_i^{(o)} = 0.4,$$

$$APP_{u_2} = LLR_2^{(i)} + \sum_{i=4}^6 LLR_i^{(o)} = -0.4,$$

and $APP_{v_i} = APP_{u_1} = 0.4$ for i = 1, 2, 3, and $APP_{v_i} = APP_{u_2} = -0.4$ for i = 4, 5, 6.

4.2 For $\pi(i) \equiv b \cdot a^i \pmod{p}$ where p is a prime, we get

$$\pi(i+1) = a\pi(i) \pmod{p}$$

and

$$\pi(i) = a^{-1}\pi(i+1) \pmod{p},$$
(1)

where a^{-1} is the inverse of a modulo p. WLOG, assume $|a| < \frac{p}{2}$ and $|a^{-1}| < \frac{p}{2}$. Thus the point $(\pi(i), \pi(i+1))$ falls on line y = ax - kp for some k. Since π is a permutation, $\pi(i)$ goes

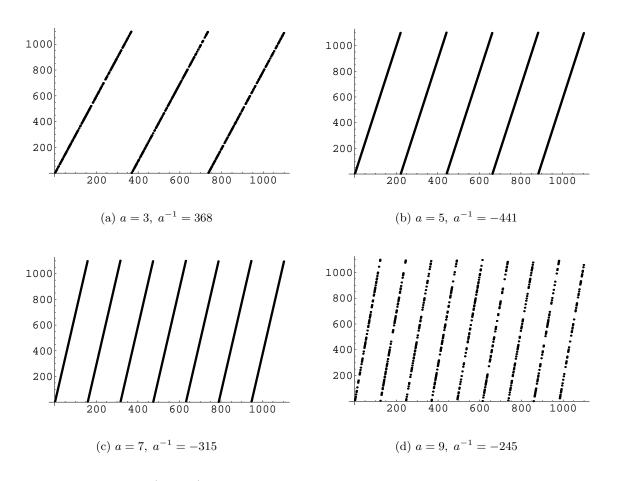


Figure 1: Plots of $y = ax \pmod{p}$ where p = 1103 and $x = 1, 2, \ldots, p-1$. Produced by Mathematica: $x = Table[\{i-1, i\}, \{i, 1, p-1\}];$ ListPlot[PowerMod[a, x, p]].

over $1, 2, \ldots, p-1$, and k has |a| different values, i.e., $k = 0, 1, \ldots, a-1$ when a > 0, and $k = a, a+1, \ldots, -1$ when a < 0. Hence the plot $\pi(i+1)$ vs. $\pi(i)$ seems to consist of |a| lines (Figure 1). However, from the viewpoint of (1), all the points fall on lines $x = a^{-1}y - kp$. Thus the plot also seems to consist of $|a^{-1}|$ lines. Either viewpoint shows that $\pi(i+1)$ and $\pi(i)$ are not independent. (Thus π is not a good random permutation.)

In order to make $\pi(i)$ and $\pi(i+1)$ seem more independent, one idea is to make both |a| and $|a^{-1}|$ as large as possible. Simple search found that $(a, a^{-1}) = \pm(531, 538)$ are the only two pairs that both |a| and $|a^{-1}|$ are larger than 530. Figure 2(b) gives the plot for a = 531.

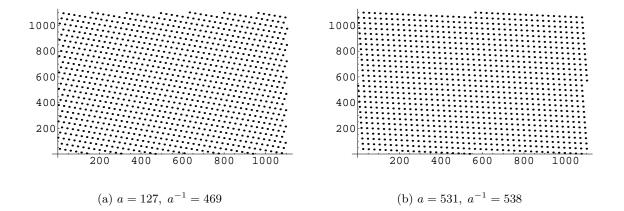


Figure 2: See Figure 1 for detail.

Though it seems similar to a = 127 (Figure 2(a)), I guess that a = 531 is better than a = 127 for an interleaver.

The plot of $\pi(i+2)$ vs. $\pi(i)$ is basically the same as the plot of $\pi(i+2)$ vs. $\pi(i)$, with a^2 instead of a. Thus $\pi(i+2)$ is also dependent on $\pi(i)$.

4.3 Let's denote the information word by $\mathbf{u} = (u_1, \ldots, u_k)$, and the internal word after the interleaver, $\mathbf{v} = (v_1, \ldots, v_{qk})$. Then the codeword is $\mathbf{x} = (x_1, \ldots, x_{qk})$, where $x_1 = v_1$, and $x_{i+1} = x_i + v_{i+1}$ for $i \ge 1$. There is a one-one mapping between $\{\mathbf{v}\}$ and $\{\mathbf{x}\}$. So different mappings from \mathbf{u} to the codeword \mathbf{x} (which are different encoding schemes) make different mapping from \mathbf{u} to \mathbf{v} , and their numbers are the same. Remember that there must be exact q u_j 's in \mathbf{v} for $j = 1, \ldots, k$. So the number of different mappings from \mathbf{u} to \mathbf{v} is

$$\frac{(qk)!}{(q!)^k}.$$
(2)

If we just care about the code, that is, the set $\{\mathbf{x}\}$, then we should divide (2) by k!, which is the number of permutations of u_1, \ldots, u_k . That is, the number of different (q, k) RA codes is

$$\frac{(qk)!}{k!(q!)^k}$$