EE/Ma 127c Error-Correcting Codes - Homework Assignment 4

Ling Li, ling@cs.caltech.edu

May 17, 2001
4.1 For input symbol u, the repeating symbol is $\mathbf{v}=\left(v_{1}, v_{2}, \ldots, v_{q}\right)=(\underbrace{u, u, \ldots, u}_{q})$. In the junction tree of $u,(u, \mathbf{v})$, and $v_{i}(i=1, \ldots, q)$,

- the message from u to (u, \mathbf{v}) is $\pi(u)$, where $\pi(u)$ is the a priori probability of u. However, we will use the a priori \log-likelihood for u :

$$
\operatorname{LLR}_{u}^{(i)}=\log \frac{\pi(u=0)}{\pi(u=1)}
$$

- The message from v_{i} to (u, \mathbf{v}) is $\left(y_{i}^{e}\right.$ is the channel observed output of $\left.v_{i}\right)$

$$
\operatorname{LLR}_{i}^{(o)}=\log \frac{\operatorname{Pr}\left\{v_{i}=0 \mid y_{i}^{e}\right\}}{\operatorname{Pr}\left\{v_{i}=1 \mid y_{i}^{e}\right\}}
$$

- The message from (u, \mathbf{v}) to u is

$$
\sum_{\mathbf{v}} \chi(u, \mathbf{v}) \prod_{i} \operatorname{Pr}\left\{v_{i} \mid y_{i}^{e}\right\}=\prod_{i} \operatorname{Pr}\left\{v_{i}=u \mid y_{i}^{e}\right\},
$$

where $\chi(u, \mathbf{v})$ is the local kernel for (u, \mathbf{v}) and $\chi(u, \mathbf{v})=1 \mathrm{iff} \mathbf{v}$ is the repetition codeword of u. The log-likelihood version of the message is

$$
\sum_{i} \operatorname{LLR}_{i}^{(o)}
$$

- The message from (u, \mathbf{v}) to v_{i} is

$$
\sum_{j: j \neq i} \operatorname{LLR}_{j}^{(o)}+\operatorname{LLR}_{u}^{(i)}
$$

Thus
(a) An efficient APP decoding rule for the information bit is

$$
\operatorname{APP}_{u}=\operatorname{LLR}_{u}^{(i)}+\sum_{i} \operatorname{LLR}_{i}^{(o)},
$$

i.e., sum of the a priori log-likelihood and the extrinsic information. And the rule for encoded bit v_{i} is

$$
\operatorname{APP}_{v_{i}}=\operatorname{LLR}_{i}^{(o)}+\sum_{j: j \neq i} \operatorname{LLR}_{j}^{(o)}+\operatorname{LLR}_{u}^{(i)}=\sum_{j} \operatorname{LLR}_{j}^{(o)}+\operatorname{LLR}_{u}^{(i)} .
$$

It is not surprising that $\operatorname{APP}_{u}=\operatorname{APP}_{v_{i}}$, since the encoding forces $v_{i}=u$.
(b) For the $(6,2)$ code, we have

$$
\begin{aligned}
& \operatorname{APP}_{u_{1}}=\operatorname{LLR}_{1}^{(i)}+\sum_{i=1}^{3} \operatorname{LLR}_{i}^{(o)}=0.4 \\
& \mathrm{APP}_{u_{2}}=\operatorname{LLR}_{2}^{(i)}+\sum_{i=4}^{6} \operatorname{LLR}_{i}^{(o)}=-0.4
\end{aligned}
$$

and $\mathrm{APP}_{v_{i}}=\mathrm{APP}_{u_{1}}=0.4$ for $i=1,2,3$, and $\mathrm{APP}_{v_{i}}=\mathrm{APP}_{u_{2}}=-0.4$ for $i=4,5,6$.
4.2 For $\pi(i) \equiv b \cdot a^{i}(\bmod p)$ where p is a prime, we get

$$
\pi(i+1)=a \pi(i) \quad(\bmod p)
$$

and

$$
\begin{equation*}
\pi(i)=a^{-1} \pi(i+1) \quad(\bmod p), \tag{1}
\end{equation*}
$$

where a^{-1} is the inverse of a modulo p. WLOG, assume $|a|<\frac{p}{2}$ and $\left|a^{-1}\right|<\frac{p}{2}$. Thus the point $(\pi(i), \pi(i+1))$ falls on line $y=a x-k p$ for some k. Since π is a permutation, $\pi(i)$ goes

Figure 1: Plots of $y=a x(\bmod p)$ where $p=1103$ and $x=1,2, \ldots, p-1$. Produced by Mathematica: $\mathrm{x}=\mathrm{Table}[\{\mathrm{i}-1, \mathrm{i}\},\{\mathrm{i}, 1, \mathrm{p}-1\}]$; ListPlot[PowerMod[a, $\mathrm{x}, \mathrm{p}]$].
over $1,2, \ldots, p-1$, and k has $|a|$ different values, i.e., $k=0,1, \ldots, a-1$ when $a>0$, and $k=a, a+1, \ldots,-1$ when $a<0$. Hence the plot $\pi(i+1)$ vs. $\pi(i)$ seems to consist of $|a|$ lines (Figure 1). However, from the viewpoint of (1), all the points fall on lines $x=a^{-1} y-k p$. Thus the plot also seems to consist of $\left|a^{-1}\right|$ lines. Either viewpoint shows that $\pi(i+1)$ and $\pi(i)$ are not independent. (Thus π is not a good random permutation.)

In order to make $\pi(i)$ and $\pi(i+1)$ seem more independent, one idea is to make both $|a|$ and $\left|a^{-1}\right|$ as large as possible. Simple search found that $\left(a, a^{-1}\right)= \pm(531,538)$ are the only two pairs that both $|a|$ and $\left|a^{-1}\right|$ are larger than 530 . Figure $2(\mathrm{~b})$ gives the plot for $a=531$.

Figure 2: See Figure 1 for detail.
Though it seems similar to $a=127$ (Figure $2(\mathrm{a})$), I guess that $a=531$ is better than $a=127$ for an interleaver.

The plot of $\pi(i+2)$ vs. $\pi(i)$ is basically the same as the plot of $\pi(i+2)$ vs. $\pi(i)$, with a^{2} instead of a. Thus $\pi(i+2)$ is also dependent on $\pi(i)$.
4.3 Let's denote the information word by $\mathbf{u}=\left(u_{1}, \ldots, u_{k}\right)$, and the internal word after the interleaver, $\mathbf{v}=\left(v_{1}, \ldots, v_{q k}\right)$. Then the codeword is $\mathbf{x}=\left(x_{1}, \ldots, x_{q k}\right)$, where $x_{1}=v_{1}$, and $x_{i+1}=x_{i}+v_{i+1}$ for $i \geq 1$. There is a one-one mapping between $\{\mathbf{v}\}$ and $\{\mathbf{x}\}$. So different mappings from \mathbf{u} to the codeword \mathbf{x} (which are different encoding schemes) make different mapping from \mathbf{u} to \mathbf{v}, and their numbers are the same. Remember that there must be exact q u_{j} 's in \mathbf{v} for $j=1, \ldots, k$. So the number of different mappings from \mathbf{u} to \mathbf{v} is

$$
\begin{equation*}
\frac{(q k)!}{(q!)^{k}} \tag{2}
\end{equation*}
$$

If we just care about the code, that is, the set $\{\mathbf{x}\}$, then we should divide (2) by k !, which is the number of permutations of u_{1}, \ldots, u_{k}. That is, the number of different (q, k) RA codes is

$$
\frac{(q k)!}{k!(q!)^{k}}
$$

