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3.1 BCJR. Let
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be the transition matrix. That is, T;; = Pr{X; = j|X;_1 =i} is the probability that state j
follows state i. Define 3 x 3 matrix Q(k) as (note that X; 1 — X; — Y} is a Markov chain)

def i )
QZ(;?) = Pr (X, =4V, =k|X;_, =i}
= Pr {Xt = j|Xt—1 = l} Pr {Yt — k‘Xt — j}

ie.,
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The probability that the Markov process takes a ‘path’ of states x = (z1, z2, 3, z4) and results
y = (y1, Y2, Y3, Y4), given the start state is xq, is

1 1
w(x,y) = HPT {(Xe =2, Vi =y Xe1 =21} = HQ;?f’f_)lzt- (1)
t=1 t=1

What we want to calculate is
Pr {XZ = jv g}
Pr{€}
= K ) wx?E), (2)

X:x;=]

Pr{X; =j|E}

where K1 =Pr{€} =3 w(x,&).

Now we can use the technique of forward-backward algorithm to get (2). Comparing (1) with
the definition of the path weight in a trellis graph, we can define W, = QWi ie., W, = QW
Wy = W3 = Q@ and Wy = Q). Since the start state zq sticks to 0, ag = (1,0,0). Thus



from oy = ay_1 Wy, we have o = (i 2 O), g = (ﬁ L 1—6) ag = (w 569 _ L), and

200 5 1200 200° 75 720000 72000 750 X
__ (. 4783 1151 569 _ 9 1 17
a1 = (510000° 1440000’ 1080000) From B4 = (1,1,1)" and Bi_1 = Wi3;, we get (33 = (3503 30)
By = (AT 5L ) By = (128 2009 89 )T and fy = (8298 1900 28991 )T
> = (Tag0> 18000 500) + B1 = (75005 To8000 6750 0 = (320000 1296000 3240000
1 43993 N
Now we have K=" = Pr{€} = a4 = 1355000, and Pr{X; = jI€} = K - a;(j) - B:(j):
Pri{X;=jl&} |i=1 2 3 4
—0 3849 2679 20349 38264
J = 13993 43993 43093 43993
1 40144 3426 11380 3453
13993 43993 43993 43993
9 0 1024 3264 2276

1189 43993 43993
Table above shows that the most probable value for X; is X1 =1, Xo =2, X3 = X4, =0.

3.2 Bayesian network.

(a) X9 and X3 are independent, since

p(z2,23) = ZP($1’$2,$3,$4)

Z1,T4

= Zp(:cl)p(xz)p(xsle)P(M\l’h$2)

x1,T4

= plx2) Zp(xl)p($3|l‘1) Zp(x4|$1, 2)
= 1132 Zp .'El LE3|$1

= p($2)p( 3)-

(b) The pair X; and X, are also independent, since

pler,wg) = > play, w2, w3, 4)

T3,T4

= Zp(:cl)p(xz)p(wsIl’l)P(M\xbx2)

= p(x1)p(e2) Y plxsler) Y plwalwr, x2)

= p(z1)p(z2).

(c) For any variable X in the Bayesian network, define a ‘source set’ of X, denoted by S(X),
as the collection of variables Z that there exits a path from Z to X. That is,

S(X)={Z]3P: Z — X}.

By definition, X € S(X).
My guess for the general rule judging whether variables X and Y are independent is: if
S(X)NS(Y) =0, they are independent; otherwise they are dependent.

Take the Bayesian network in the problem as an example. We have
S(X1) = {X1}, S(Xa) = {Xa}, S(X3) = {X1, X3}, S(Xy) = {X1, X2, Xy}

Thus by the general rule, there are two pairs, (X1, X9) and (X2, X3), that are independent.



3.3 Matrixz chain. A:pxq, B:gxr,C:rxs.

(a) To calculate one entry of AB, we need ¢ scalar multiplications. Thus to computer AB,
the number of scalar multiplications is pgr.

(b) When ABC is parenthesized as (AB)C, the number of scalar multiplications is pgr + prs,
since the size of AB is p x r. Similarly, that number of A(BC) is gqrs + pgs.

(¢) When p =10, ¢ = 100, » = 5, and s = 50, computing ABC as (AB)C needs
pgr + prs = pr(qg+s) = 10 x 5 x 150 = 7500
scalar multiplications, while computing ABC' as A(BC) needs
qrs + pgs = qs(p+r) = 100 x 50 x 15 = 75000

scalar multiplications. Thus to compute ABC via (AB)C is better.



