# EE/Ma 127c Error-Correcting Codes - Homework Assignment 3 

Ling Li, ling@cs.caltech.edu

April 25, 2001

### 3.1 BCJR. Let

$$
T=\left(\begin{array}{ccc}
\frac{1}{2} & \frac{1}{2} & 0 \\
\frac{1}{3} & 0 & \frac{2}{3} \\
\frac{2}{3} & \frac{1}{3} & 0
\end{array}\right)
$$

be the transition matrix. That is, $T_{i j}=\operatorname{Pr}\left\{X_{t}=j \mid X_{t-1}=i\right\}$ is the probability that state $j$ follows state $i$. Define $3 \times 3$ matrix $Q^{(k)}$ as (note that $X_{t-1} \rightarrow X_{t} \rightarrow Y_{t}$ is a Markov chain)

$$
\begin{aligned}
Q_{i j}^{(k)} & \stackrel{\text { def }}{=} \operatorname{Pr}\left\{X_{t}=j, Y_{t}=k \mid X_{t-1}=i\right\} \\
& =\operatorname{Pr}\left\{X_{t}=j \mid X_{t-1}=i\right\} \operatorname{Pr}\left\{Y_{t}=k \mid X_{t}=j\right\} \\
& =T_{i j} P_{j k}
\end{aligned}
$$

i.e.,

$$
Q^{(0)}=\left(\begin{array}{ccc}
\frac{2}{5} & \frac{1}{20} & 0 \\
\frac{4}{15} & 0 & \frac{1}{15} \\
\frac{8}{15} & \frac{1}{30} & 0
\end{array}\right), Q^{(1)}=\left(\begin{array}{ccc}
\frac{1}{20} & \frac{2}{5} & 0 \\
\frac{1}{30} & 0 & \frac{1}{15} \\
\frac{1}{15} & \frac{4}{15} & 0
\end{array}\right), Q^{(2)}=\left(\begin{array}{ccc}
\frac{1}{20} & \frac{1}{20} & 0 \\
\frac{1}{30} & 0 & \frac{8}{15} \\
\frac{1}{15} & \frac{1}{30} & 0
\end{array}\right)
$$

The probability that the Markov process takes a 'path' of states $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ and results $\mathbf{y}=\left(y_{1}, y_{2}, y_{3}, y_{4}\right)$, given the start state is $x_{0}$, is

$$
\begin{equation*}
w(\mathbf{x}, \mathbf{y})=\prod_{t=1}^{4} \operatorname{Pr}\left\{X_{t}=x_{t}, Y_{t}=y_{t} \mid X_{t-1}=x_{t-1}\right\}=\prod_{t=1}^{4} Q_{x_{t-1} x_{t}}^{\left(y_{t}\right)} \tag{1}
\end{equation*}
$$

What we want to calculate is

$$
\begin{align*}
\operatorname{Pr}\left\{X_{i}=j \mid \mathcal{E}\right\} & =\frac{\operatorname{Pr}\left\{X_{i}=j, \mathcal{E}\right\}}{\operatorname{Pr}\{\mathcal{E}\}} \\
& =K \sum_{\mathbf{x}: x_{i}=j} w(\mathbf{x}, \mathcal{E}) \tag{2}
\end{align*}
$$

where $K^{-1}=\operatorname{Pr}\{\mathcal{E}\}=\sum_{\mathbf{x}} w(\mathbf{x}, \mathcal{E})$.
Now we can use the technique of forward-backward algorithm to get (2). Comparing (1) with the definition of the path weight in a trellis graph, we can define $W_{t}=Q^{\left(y_{t}^{e}\right)}$, i.e., $W_{1}=Q^{(1)}$, $W_{2}=W_{3}=Q^{(2)}$, and $W_{4}=Q^{(0)}$. Since the start state $x_{0}$ sticks to $0, \alpha_{0}=(1,0,0)$. Thus
from $\alpha_{t}=\alpha_{t-1} W_{t}$, we have $\alpha_{1}=\left(\frac{1}{20}, \frac{2}{5}, 0\right), \alpha_{2}=\left(\frac{19}{1200}, \frac{1}{400}, \frac{16}{75}\right), \alpha_{3}=\left(\frac{1087}{72000}, \frac{569}{72000}, \frac{1}{750}\right)$, and $\alpha_{4}=\left(\frac{4783}{540000}, \frac{1151}{1440000}, \frac{569}{1080000}\right)$. From $\beta_{4}=(1,1,1)^{T}$ and $\beta_{t-1}=W_{t} \beta_{t}$, we get $\beta_{3}=\left(\frac{9}{20}, \frac{1}{3}, \frac{17}{30}\right)^{T}$, $\beta_{2}=\left(\frac{47}{1200}, \frac{571}{1800}, \frac{37}{900}\right)^{T}, \beta_{1}=\left(\frac{1283}{72000}, \frac{2509}{108000}, \frac{89}{6750}\right)^{T}$, and $\beta_{0}=\left(\frac{43993}{4320000}, \frac{1909}{1296000}, \frac{23921}{3240000}\right)^{T}$.
Now we have $K^{-1}=\operatorname{Pr}\{\mathcal{E}\}=\alpha_{t} \beta_{t}=\frac{43993}{4320000}$, and $\operatorname{Pr}\left\{X_{i}=j \mid \mathcal{E}\right\}=K \cdot \alpha_{i}(j) \cdot \beta_{i}(j)$ :

| $\operatorname{Pr}\left\{X_{i}=j \mid \mathcal{E}\right\}$ | $i=1$ | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: |
| $j=0$ | $\frac{3849}{43993}$ | $\frac{2679}{43933}$ | $\frac{29349}{43993}$ | $\frac{38264}{43993}$ |
| 1 | $\frac{4044}{43993}$ | $\frac{3426}{43993}$ | $\frac{11390}{43993}$ | $\frac{3453}{43993}$ |
| 2 | 0 | $\frac{1024}{1189}$ | $\frac{3264}{43993}$ | $\frac{2276}{43993}$ |

Table above shows that the most probable value for $X_{i}$ is $X_{1}=1, X_{2}=2, X_{3}=X_{4}=0$.

### 3.2 Bayesian network.

(a) $X_{2}$ and $X_{3}$ are independent, since

$$
\begin{aligned}
p\left(x_{2}, x_{3}\right) & =\sum_{x_{1}, x_{4}} p\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \\
& =\sum_{x_{1}, x_{4}} p\left(x_{1}\right) p\left(x_{2}\right) p\left(x_{3} \mid x_{1}\right) p\left(x_{4} \mid x_{1}, x_{2}\right) \\
& =p\left(x_{2}\right) \sum_{x_{1}} p\left(x_{1}\right) p\left(x_{3} \mid x_{1}\right) \sum_{x_{4}} p\left(x_{4} \mid x_{1}, x_{2}\right) \\
& =p\left(x_{2}\right) \sum_{x_{1}} p\left(x_{1}\right) p\left(x_{3} \mid x_{1}\right) \\
& =p\left(x_{2}\right) p\left(x_{3}\right) .
\end{aligned}
$$

(b) The pair $X_{1}$ and $X_{2}$ are also independent, since

$$
\begin{aligned}
p\left(x_{1}, x_{2}\right) & =\sum_{x_{3}, x_{4}} p\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \\
& =\sum_{x_{3}, x_{4}} p\left(x_{1}\right) p\left(x_{2}\right) p\left(x_{3} \mid x_{1}\right) p\left(x_{4} \mid x_{1}, x_{2}\right) \\
& =p\left(x_{1}\right) p\left(x_{2}\right) \sum_{x_{3}} p\left(x_{3} \mid x_{1}\right) \sum_{x_{4}} p\left(x_{4} \mid x_{1}, x_{2}\right) \\
& =p\left(x_{1}\right) p\left(x_{2}\right) .
\end{aligned}
$$

(c) For any variable $X$ in the Bayesian network, define a 'source set' of $X$, denoted by $S(X)$, as the collection of variables $Z$ that there exits a path from $Z$ to $X$. That is,

$$
S(X)=\{Z \mid \exists P: Z \mapsto X\} .
$$

By definition, $X \in S(X)$.
My guess for the general rule judging whether variables $X$ and $Y$ are independent is: if $S(X) \cap S(Y)=\emptyset$, they are independent; otherwise they are dependent.
Take the Bayesian network in the problem as an example. We have

$$
S\left(X_{1}\right)=\left\{X_{1}\right\}, S\left(X_{2}\right)=\left\{X_{2}\right\}, S\left(X_{3}\right)=\left\{X_{1}, X_{3}\right\}, S\left(X_{4}\right)=\left\{X_{1}, X_{2}, X_{4}\right\}
$$

Thus by the general rule, there are two pairs, $\left(X_{1}, X_{2}\right)$ and $\left(X_{2}, X_{3}\right)$, that are independent.
3.3 Matrix chain. $A: p \times q, B: q \times r, C: r \times s$.
(a) To calculate one entry of $A B$, we need $q$ scalar multiplications. Thus to computer $A B$, the number of scalar multiplications is $p q r$.
(b) When $A B C$ is parenthesized as $(A B) C$, the number of scalar multiplications is $p q r+p r s$, since the size of $A B$ is $p \times r$. Similarly, that number of $A(B C)$ is $q r s+p q s$.
(c) When $p=10, q=100, r=5$, and $s=50$, computing $A B C$ as $(A B) C$ needs

$$
p q r+p r s=p r(q+s)=10 \times 5 \times 150=7500
$$

scalar multiplications, while computing $A B C$ as $A(B C)$ needs

$$
q r s+p q s=q s(p+r)=100 \times 50 \times 15=75000
$$

scalar multiplications. Thus to compute $A B C$ via $(A B) C$ is better.

