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2.1 The trellis graph shows

W1 =
[
1 2

]
,W2 =

[
4 0 2
2 8 0

]
,W3 =

4 0 2
8 1 2
0 1 4

 ,W4 =

2 0
4 2
0 1

 ,W5 =
[
1
2

]
.

(a) From α0 = 1, αi = αi−1Wi, for i = 1, . . . , 5, we get

α0 = 1, α1 =
[
1 2

]
, α2 =

[
8 16 2

]
, α3 =

[
160 18 56

]
, α4 =

[
392 92

]
, α5 = 576;

from β5 = 1, βi−1 = Wiβi, for i = 1, . . . , 5, we get

β0 = 576, β1 =
[

80
248

]
, β2 =

12
28
16

 , β3 =

2
8
2

 , β4 =
[
1
2

]
, β5 = 1.

(b) For i = 0, 1, . . . , 5, and v ∈ Vi, let µi be a column vector of dimension qi (same as βi),
and µi(v) be the flow from A to B through v. Then µi(v) = µv(A,B) = αi(v)βi(v).

µ0 = 576, µ1 =
[

80
496

]
, µ2 =

 96
448
32

 , µ3 =

320
144
112

 , µ4 =
[
392
184

]
, µ5 = 576.

For i = 1, . . . , 5, and edge e = (u, v) where u ∈ Vi−1 and v ∈ Vi, we have µe(A,B) =
αi−1(u)w(e)βi(v). To avoid plotting the trellis graph, let νi be a qi−1 × qi matrix and
vi(u, v) be the flow µe(A,B). Thus we have

ν1 =
[
80 496

]
, ν2 =

[
48 0 32
48 448 0

]
, ν3 =

 64 0 32
256 128 64
0 16 16

 , ν4 =

320 0
72 72
0 112

 , ν5 =
[
392
184

]
.

We can verify that µi(v) is the same the sum of the vth column of νi.

(c) Take the log (base 2) of Wi, we get W ′i :

W ′1 =
[
0 1

]
,W ′2 =

[
2 −∞ 1
1 3 −∞

]
,W ′3 =

 2 −∞ 1
3 0 1
−∞ 0 2

 ,W ′4 =

 1 −∞
2 1
−∞ 0

 ,W ′5 =
[
0
1

]
.
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Using the “log” forward-backward algorithm with max-sum, we get α′i and β′i below:

α′0 = 0, α′1 =
[
0 1

]
, α′2 =

[
2 4 1

]
, α′3 =

[
7 4 5

]
, α′4 =

[
8 5

]
, α′5 = 8;

β′0 = 8, β′1 =
[
5
7

]
, β′2 =

3
4
3

 , β′3 =

1
2
1

 , β′4 =
[
0
1

]
, β′5 = 0.

2.2 Let g(∆) denote the approximation function of f(∆), which takes the form (∆0 = 0,∆4 =∞)

g(∆) =


y1, ∆0 ≤ ∆ < ∆1;
y2, ∆1 ≤ ∆ < ∆2;
y3, ∆2 ≤ ∆ < ∆3;
y4, ∆3 ≤ ∆ < ∆4.

The problem is: define an error measure between f and g approximation, denoted by E(f, g),
and find g that minimizes E(f, g).

(a) Define the error measure as the maximum discrepancy between f and g:

E(f, g) = sup
∆≥∆0

|f(∆)− g(∆)| .

(We should use sup instead of max.) Since we know f(∆) is a continuous and monotonously
decreasing function of ∆, we get for i = 1, . . . , 4,

sup
∆∈[∆i−1,∆i)

|f(∆)− g(∆)| = sup
∆∈[∆i−1,∆i)

|f(∆)− yi|

= max (|f(∆i−1)− yi| , |f(∆i)− yi|)

≥ f(∆i−1)− f(∆i)
2

,

with equalitiy iff

yi =
f(∆i−1) + f(∆i)

2
. (1)

Thus

E(f, g) = sup
∆≥∆0

|f(∆)− g(∆)| =
4

max
i=1

sup
∆∈[∆i−1,∆i)

|f(∆)− g(∆)|

≥ 1
4

4∑
i=1

sup
∆∈[∆i−1,∆i)

|f(∆)− g(∆)|

=
1
8
f(0) =

ln 2
8
,

with equality iff (1) holds for all i = 1, . . . , 4. To minimize E(f, g), f(∆i) should be
4−i

4 f(0), that is,

∆i = f−1

(
4− i

4
ln 2
)

= − ln
(

21− i
4 − 1

)
,

and

yi =
9− 2i

8
f(0) =

9− 2i
8

ln 2.

Figure 1(a) shows both f and g.
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(a) with maximum distance error
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(b) with mean square error and p = 1/5.

Figure 1: f(x) = ln(1 + e−x) and its approximator g(x).

(b) With some predefined probability p(x), define the error measure as

E(f, g) =
∫ ∞

0
p(x) (f(x)− g(x))2 dx =

4∑
i=1

∫ ∆i

∆i−1

p(x) (f(x)− yi)2 dx.

To minimize E(f, g), we have for i = 1, . . . , 4 and j = 1, . . . , 3,

∂E

∂yi
= 2

∫ ∆i

∆i−1

p(x) (yi − f(x)) dx = 0, (2)

∂E

∂∆j
= p(∆j) (f(∆j)− yj)2 − p(∆j) (f(∆j)− yj+1)2 = 0. (3)

From (2), we get

yi =

∫ ∆i

∆i−1
p(x)f(x)dx∫ ∆i

∆i−1
p(x)dx

.

It is reasonable to assume p(∆j) 6= 0, and yj > f(∆j) > yj+1 since f(∆) is a decreasing
function of ∆. Then from (3), we get

2f(∆j) = yj + yj+1.

We can not get a closed form for yi and ∆i. However, we can use numerical techniques
to get a numerical solution. For example, if

p(x) =
{

1
5 , 0 ≤ x ≤ 5;
0, otherwise

(since f(x) < 0.007 when x > 5, we might omit them) I got

y1 ≈ 0.589135, y2 ≈ 0.384069, y3 ≈ 0.192328, y4 ≈ 0.039135,
∆1 ≈ 0.467161,∆2 ≈ 1.096547,∆3 ≈ 2.098058.

Figure 1(b) shows that this g gives more attention to larger x than the previous one.
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2.1 Commutative semiring.

(a) Below I list the equations of the distributive law in every case. It is really straightforward
that they hold.

sum-product (a · b) + (a · c) = a · (b+ c).
min-product a > 0. min (a · b, a · c) = a ·min (b, c).
max-product a > 0. max (a · b, a · c) = a ·max (b, c).
min-sum min (a+ b, a+ c) = a+ min (b, c).
max-sum max (a+ b, a+ c) = a+ max (b, c).

(b) From mP to MP, we can use the mapping x 7→ x−1. That is

mP x (0,∞] ∞ 1 a · b min (a, b)
MP x−1 [0,∞) 0 1 a−1 · b−1 max

(
a−1, b−1

)
From MP to mS, we can use the mapping x 7→ − log x.

MP x [0,∞) 0 1 a · b max (a, b)
mS − log x (−∞,∞] ∞ 0 (− log a) + (− log b) min (− log a,− log b)

From mS to MS, we can use the mapping x 7→ −x.

mS x (−∞,∞] ∞ 0 a+ b min (a, b)
MS −x [−∞,∞) −∞ 0 (−a) + (−b) max (−a,−b)

Then by inversing or composing mappings, we get the table below:


mP MP mS MS

mP ∗ x−1 log x − log x
MP x−1 ∗ − log x log x
mS ex e−x ∗ −x
MS e−x ex −x ∗


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