EE/Ma 127c Error-Correcting Codes - Homework Assignment 2

Ling Li, ling@cs.caltech.edu
April 19, 2001
2.1 The trellis graph shows

$$
W_{1}=\left[\begin{array}{ll}
1 & 2
\end{array}\right], W_{2}=\left[\begin{array}{lll}
4 & 0 & 2 \\
2 & 8 & 0
\end{array}\right], W_{3}=\left[\begin{array}{lll}
4 & 0 & 2 \\
8 & 1 & 2 \\
0 & 1 & 4
\end{array}\right], W_{4}=\left[\begin{array}{ll}
2 & 0 \\
4 & 2 \\
0 & 1
\end{array}\right], W_{5}=\left[\begin{array}{l}
1 \\
2
\end{array}\right] .
$$

(a) From $\alpha_{0}=1, \alpha_{i}=\alpha_{i-1} W_{i}$, for $i=1, \ldots, 5$, we get

$$
\alpha_{0}=1, \alpha_{1}=\left[\begin{array}{ll}
1 & 2
\end{array}\right], \alpha_{2}=\left[\begin{array}{lll}
8 & 16 & 2
\end{array}\right], \alpha_{3}=\left[\begin{array}{lll}
160 & 18 & 56
\end{array}\right], \alpha_{4}=\left[\begin{array}{ll}
392 & 92
\end{array}\right], \alpha_{5}=576 ;
$$

from $\beta_{5}=1, \beta_{i-1}=W_{i} \beta_{i}$, for $i=1, \ldots, 5$, we get

$$
\beta_{0}=576, \beta_{1}=\left[\begin{array}{c}
80 \\
248
\end{array}\right], \beta_{2}=\left[\begin{array}{l}
12 \\
28 \\
16
\end{array}\right], \beta_{3}=\left[\begin{array}{l}
2 \\
8 \\
2
\end{array}\right], \beta_{4}=\left[\begin{array}{l}
1 \\
2
\end{array}\right], \beta_{5}=1
$$

(b) For $i=0,1, \ldots, 5$, and $v \in V_{i}$, let μ_{i} be a column vector of dimension q_{i} (same as β_{i}), and $\mu_{i}(v)$ be the flow from A to B through v. Then $\mu_{i}(v)=\mu_{v}(A, B)=\alpha_{i}(v) \beta_{i}(v)$.

$$
\mu_{0}=576, \mu_{1}=\left[\begin{array}{c}
80 \\
496
\end{array}\right], \mu_{2}=\left[\begin{array}{c}
96 \\
448 \\
32
\end{array}\right], \mu_{3}=\left[\begin{array}{l}
320 \\
144 \\
112
\end{array}\right], \mu_{4}=\left[\begin{array}{l}
392 \\
184
\end{array}\right], \mu_{5}=576 .
$$

For $i=1, \ldots, 5$, and edge $e=(u, v)$ where $u \in V_{i-1}$ and $v \in V_{i}$, we have $\mu_{e}(A, B)=$ $\alpha_{i-1}(u) w(e) \beta_{i}(v)$. To avoid plotting the trellis graph, let ν_{i} be a $q_{i-1} \times q_{i}$ matrix and $v_{i}(u, v)$ be the flow $\mu_{e}(A, B)$. Thus we have

$$
\nu_{1}=\left[\begin{array}{ll}
80 & 496
\end{array}\right], \nu_{2}=\left[\begin{array}{ccc}
48 & 0 & 32 \\
48 & 448 & 0
\end{array}\right], \nu_{3}=\left[\begin{array}{ccc}
64 & 0 & 32 \\
256 & 128 & 64 \\
0 & 16 & 16
\end{array}\right], \nu_{4}=\left[\begin{array}{cc}
320 & 0 \\
72 & 72 \\
0 & 112
\end{array}\right], \nu_{5}=\left[\begin{array}{l}
392 \\
184
\end{array}\right] .
$$

We can verify that $\mu_{i}(v)$ is the same the sum of the $v^{\text {th }}$ column of ν_{i}.
(c) Take the $\log ($ base 2$)$ of W_{i}, we get W_{i}^{\prime} :
$W_{1}^{\prime}=\left[\begin{array}{ll}0 & 1\end{array}\right], W_{2}^{\prime}=\left[\begin{array}{ccc}2 & -\infty & 1 \\ 1 & 3 & -\infty\end{array}\right], W_{3}^{\prime}=\left[\begin{array}{ccc}2 & -\infty & 1 \\ 3 & 0 & 1 \\ -\infty & 0 & 2\end{array}\right], W_{4}^{\prime}=\left[\begin{array}{cc}1 & -\infty \\ 2 & 1 \\ -\infty & 0\end{array}\right], W_{5}^{\prime}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$

Using the "log" forward-backward algorithm with max-sum, we get α_{i}^{\prime} and β_{i}^{\prime} below:

$$
\begin{gathered}
\alpha_{0}^{\prime}=0, \alpha_{1}^{\prime}=\left[\begin{array}{ll}
0 & 1
\end{array}\right], \alpha_{2}^{\prime}=\left[\begin{array}{lll}
2 & 4 & 1
\end{array}\right], \alpha_{3}^{\prime}=\left[\begin{array}{lll}
7 & 4 & 5
\end{array}\right], \alpha_{4}^{\prime}=\left[\begin{array}{ll}
8 & 5
\end{array}\right], \alpha_{5}^{\prime}=8 \\
\beta_{0}^{\prime}=8, \beta_{1}^{\prime}=\left[\begin{array}{l}
5 \\
7
\end{array}\right], \beta_{2}^{\prime}=\left[\begin{array}{l}
3 \\
4 \\
3
\end{array}\right], \beta_{3}^{\prime}=\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right], \beta_{4}^{\prime}=\left[\begin{array}{l}
0 \\
1
\end{array}\right], \beta_{5}^{\prime}=0 .
\end{gathered}
$$

2.2 Let $g(\Delta)$ denote the approximation function of $f(\Delta)$, which takes the form $\left(\Delta_{0}=0, \Delta_{4}=\infty\right)$

$$
g(\Delta)= \begin{cases}y_{1}, & \Delta_{0} \leq \Delta<\Delta_{1} \\ y_{2}, & \Delta_{1} \leq \Delta<\Delta_{2} \\ y_{3}, & \Delta_{2} \leq \Delta<\Delta_{3} \\ y_{4}, & \Delta_{3} \leq \Delta<\Delta_{4}\end{cases}
$$

The problem is: define an error measure between f and g approximation, denoted by $E(f, g)$, and find g that minimizes $E(f, g)$.
(a) Define the error measure as the maximum discrepancy between f and g :

$$
E(f, g)=\sup _{\Delta \geq \Delta_{0}}|f(\Delta)-g(\Delta)|
$$

(We should use sup instead of max.) Since we know $f(\Delta)$ is a continuous and monotonously decreasing function of Δ, we get for $i=1, \ldots, 4$,

$$
\begin{aligned}
\sup _{\Delta \in\left[\Delta_{i-1}, \Delta_{i}\right)}|f(\Delta)-g(\Delta)| & =\sup _{\Delta \in\left[\Delta_{i-1}, \Delta_{i}\right)}\left|f(\Delta)-y_{i}\right| \\
& =\max \left(\left|f\left(\Delta_{i-1}\right)-y_{i}\right|,\left|f\left(\Delta_{i}\right)-y_{i}\right|\right) \\
& \geq \frac{f\left(\Delta_{i-1}\right)-f\left(\Delta_{i}\right)}{2}
\end{aligned}
$$

with equalitiy iff

$$
\begin{equation*}
y_{i}=\frac{f\left(\Delta_{i-1}\right)+f\left(\Delta_{i}\right)}{2} . \tag{1}
\end{equation*}
$$

Thus

$$
\begin{aligned}
E(f, g)=\sup _{\Delta \geq \Delta_{0}}|f(\Delta)-g(\Delta)| & =\max _{i=1}^{4} \sup _{\Delta \in\left[\Delta_{i-1}, \Delta_{i}\right)}|f(\Delta)-g(\Delta)| \\
& \geq \frac{1}{4} \sum_{i=1}^{4} \sup _{\Delta \in\left[\Delta_{i-1}, \Delta_{i}\right)}|f(\Delta)-g(\Delta)| \\
& =\frac{1}{8} f(0)=\frac{\ln 2}{8}
\end{aligned}
$$

with equality iff (1) holds for all $i=1, \ldots, 4$. To minimize $E(f, g), f\left(\Delta_{i}\right)$ should be $\frac{4-i}{4} f(0)$, that is,

$$
\Delta_{i}=f^{-1}\left(\frac{4-i}{4} \ln 2\right)=-\ln \left(2^{1-\frac{i}{4}}-1\right)
$$

and

$$
y_{i}=\frac{9-2 i}{8} f(0)=\frac{9-2 i}{8} \ln 2 .
$$

Figure 1(a) shows both f and g.

Figure 1: $f(x)=\ln \left(1+e^{-x}\right)$ and its approximator $g(x)$.
(b) With some predefined probability $p(x)$, define the error measure as

$$
E(f, g)=\int_{0}^{\infty} p(x)(f(x)-g(x))^{2} d x=\sum_{i=1}^{4} \int_{\Delta_{i-1}}^{\Delta_{i}} p(x)\left(f(x)-y_{i}\right)^{2} d x
$$

To minimize $E(f, g)$, we have for $i=1, \ldots, 4$ and $j=1, \ldots, 3$,

$$
\begin{align*}
\frac{\partial E}{\partial y_{i}} & =2 \int_{\Delta_{i-1}}^{\Delta_{i}} p(x)\left(y_{i}-f(x)\right) d x=0 \tag{2}\\
\frac{\partial E}{\partial \Delta_{j}} & =p\left(\Delta_{j}\right)\left(f\left(\Delta_{j}\right)-y_{j}\right)^{2}-p\left(\Delta_{j}\right)\left(f\left(\Delta_{j}\right)-y_{j+1}\right)^{2}=0 \tag{3}
\end{align*}
$$

From (2), we get

$$
y_{i}=\frac{\int_{\Delta_{i-1}}^{\Delta_{i}} p(x) f(x) d x}{\int_{\Delta_{i-1}}^{\Delta_{i}} p(x) d x}
$$

It is reasonable to assume $p\left(\Delta_{j}\right) \neq 0$, and $y_{j}>f\left(\Delta_{j}\right)>y_{j+1}$ since $f(\Delta)$ is a decreasing function of Δ. Then from (3), we get

$$
2 f\left(\Delta_{j}\right)=y_{j}+y_{j+1} .
$$

We can not get a closed form for y_{i} and Δ_{i}. However, we can use numerical techniques to get a numerical solution. For example, if

$$
p(x)= \begin{cases}\frac{1}{5}, & 0 \leq x \leq 5 \\ 0, & \text { otherwise }\end{cases}
$$

(since $f(x)<0.007$ when $x>5$, we might omit them) I got

$$
\begin{gathered}
y_{1} \approx 0.589135, y_{2} \approx 0.384069, y_{3} \approx 0.192328, y_{4} \approx 0.039135, \\
\Delta_{1} \approx 0.467161, \Delta_{2} \approx 1.096547, \Delta_{3} \approx 2.098058
\end{gathered}
$$

Figure 1(b) shows that this g gives more attention to larger x than the previous one.

2.1 Commutative semiring.

(a) Below I list the equations of the distributive law in every case. It is really straightforward that they hold.
sum-product $(a \cdot b)+(a \cdot c)=a \cdot(b+c)$.
min-product $a>0 . \min (a \cdot b, a \cdot c)=a \cdot \min (b, c)$.
max-product $a>0 . \max (a \cdot b, a \cdot c)=a \cdot \max (b, c)$.
$\min -$ sum $\min (a+b, a+c)=a+\min (b, c)$.
$\boldsymbol{\operatorname { m a x }}$-sum $\max (a+b, a+c)=a+\max (b, c)$.
(b) From mP to MP, we can use the mapping $x \mapsto x^{-1}$. That is

mP	x	$(0, \infty]$	∞	1	$a \cdot b$	$\min (a, b)$
MP	x^{-1}	$[0, \infty)$	0	1	$a^{-1} \cdot b^{-1}$	$\max \left(a^{-1}, b^{-1}\right)$

From MP to mS, we can use the mapping $x \mapsto-\log x$.

$$
\begin{array}{c|cccccc}
\mathrm{MP} & x & {[0, \infty)} & 0 & 1 & a \cdot b & \max (a, b) \\
\hline \mathrm{mS} & -\log x & (-\infty, \infty] & \infty & 0 & (-\log a)+(-\log b) & \min (-\log a,-\log b)
\end{array}
$$

From mS to MS, we can use the mapping $x \mapsto-x$.

$$
\begin{array}{c|cccccc}
\mathrm{mS} & x & (-\infty, \infty] & \infty & 0 & a+b & \min (a, b) \\
\hline \mathrm{MS} & -x & {[-\infty, \infty)} & -\infty & 0 & (-a)+(-b) & \max (-a,-b)
\end{array}
$$

Then by inversing or composing mappings, we get the table below:
mP
MP
mS
MS $\left(\begin{array}{cccc}* & \mathrm{MP} & \mathrm{mS} & \mathrm{MS} \\ x^{-1} & * & -\log x & -\log x \\ e^{x} & e^{-x} & * & -x \\ e^{-x} & e^{x} & -x & *\end{array}\right)$

