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1.1 Let f(x) = 1√
2πσ2

e−
x2

2σ2 denote the probability distribution function (pdf) of N (0, σ2). When
x = (x1, x2, . . . , xn) is sent, the probability that y = (y1, y2, . . . , yn) is received is

p(y|x) =
n∏
i=1

f(yi − xi)

since yi = xi + zi and zi are i.i.d.∼ N (0, σ2). Assume all codewords are sent with equal
probabilities. Then the maximum-likelihood decoding (MLD) is to find the codeword x with
maximal p(y|x), i.e., with minimal

d(x,y) =
n∑
i=1

(yi − xi)2.

The (n, 1) repetition code has only two codewords, (+1,+1, . . . ,+1) and (−1,−1, . . . ,−1).
Thus finding the minimal d(x,y) is equivalent to calculating the sign of

n∑
i=1

(yi + 1)2 −
n∑
i=1

(yi − 1)2 = 4
n∑
i=1

yi.

Below is an MLD algorithm for this code (and this channel):

(a) Calculate

s =
n∑
i=1

yi.

If s > 0, the ML codeword is (+1,+1, . . . ,+1); if s < 0, the ML codeword is (−1,−1, . . . ,−1);
if s = 0, there is a tie and we can use either codeword.

(b) By symmetry, assume the sent codeword is (+1,+1, . . . ,+1). The decoder error proba-
bility is

Pe = Pr {s ≤ 0|(+1,+1, . . . ,+1) sent} .

From yi = xi + zi = 1 + zi, s =
∑
yi is a random variable∼ N (n, nσ2). Thus

Pe = Pr {s− n ≤ −n|(+1,+1, . . . ,+1) sent} = Q

(
n√
nσ2

)
= Q

(√
2
Eb
N0

)
, (1)

where Q(x) = 1√
2π

∫∞
x e−t

2
dt.
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(c) From (1), the performance of using (n, 1) repetition code is just the same as that of
uncoded BPSK, if Eb

N0
remains the same.

1.2 Let dmin denote the minimum distance of the code. Let P denote a “best” interleaver (a
permutation matrix that maximizes dmin). The codeword with information u is (uG,uPG).
For a specific input u = (1, 0, 0, 0), whatever P is, uP is of weight 1; and since every row of G
is of weight 2, the encoder produces a codeword of weight 4. Thus dmin ≤ 4.

In order to make dmin = 4 (we do not know whether dmin = 4 is achievable or not; however
we can try), there should not be some non-zero codeword (uG,uPG) with weight less than 4.
Notice that the weight of each row of G is even. Thus the weights of uG and uPG are also
even. So we need only to ensure for any u, if uG = 0 then uPG is not of weight 2, and if
uPG = 0, then uG is not of weight 2.

uG = 0 gives u = 0 or u = (0, 0, 1, 1). u = 0 always gives uPG = 0, which is not of weight 2.
For u = (0, 0, 1, 1), that uPG is not of weight 2 gives uP = (1, 1, 0, 0) or (0, 0, 1, 1) (note that
the weight of uP should also be 2). Thus P should be one of

0 0 · · · · · ·
0 0 · · · · · ·
1 0 0 0
0 1 0 0

 ,


0 0 · · · · · ·
0 0 · · · · · ·
0 1 0 0
1 0 0 0

 ,


· · · · · · 0 0
· · · · · · 0 0
0 0 1 0
0 0 0 1

 ,


· · · · · · 0 0
· · · · · · 0 0
0 0 0 1
0 0 1 0

 .

Similarly, from uPG = 0 and uG is not of weight 2, we know P should be one of
0 0 1 0
0 0 0 1
· · · · · · 0 0
· · · · · · 0 0

 ,


0 0 0 1
0 0 1 0
· · · · · · 0 0
· · · · · · 0 0

 ,


· · · · · · 0 0
· · · · · · 0 0
0 0 1 0
0 0 0 1

 ,


· · · · · · 0 0
· · · · · · 0 0
0 0 0 1
0 0 1 0

 .

Thus there are eight choices for P , which denoted by the positions of 1’s in each row, are
(1, 2, 3, 4), (1, 2, 4, 3), (2, 1, 3, 4), (2, 1, 4, 3), (3, 4, 1, 2), (3, 4, 2, 1), (4, 3, 1, 2), and (4, 3, 2, 1).

However, the rank of G is 3, and uG is the same if u3 +u4 is the same. Thus in order to ensure
the code has dimension 4, we have to “shift” u3 and/or u4 out of positions 3 and 4. Thus P
can only be (3, 4, 1, 2), (3, 4, 2, 1), (4, 3, 1, 2), or (4, 3, 2, 1).

1.3 By Bayes’ rule,

Pr {ui = a|Y = y} =
1

Pr {Y = y}
∑

u:ui=a

Pr {Y = y|U = u}Pr {U = u}

=
1

Pr {Y = y}
p0(a)

∑
u:ui=a

Pr {Y = y|X = uG}
∏
j 6=i

p0(uj)

Let

Qi(a) =
∑

u:ui=a

Pr {Y = y|X = uG}
∏
j 6=i

p0(uj).

That is,

Q1(a) = Pr {Y = y|X = (a, 0)G} p0(0) + Pr {Y = y|X = (a, 1)G} p0(1),
Q2(a) = Pr {Y = y|X = (0, a)G} p0(0) + Pr {Y = y|X = (1, a)G} p0(1).
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Then the a posteriori probability for ui is (where j 6= i)

log
Pr {ui = 0|Y = y}
Pr {ui = 1|Y = y}

= log
p0(0)
p0(1)

+ log
Qi(0)
Qi(1)

(a) p0(0) = p0(1) = 1
2 , y = ABCD. We have∗ Q1(0) = 5

210 , Q1(1) = 17
213 , Q2(0) = 3

210 ,
Q2(1) = 33

213 . Thus the “extrinsic information” for u1 is log Q1(0)
Q1(1) = log 40

17 ≈ 1.2345, for

u2 is log Q2(0)
Q2(1) = log 8

11 ≈ −0.4594. Since log p0(0)
p0(1)

= 0, the a posteriori probabilities are
equal to the extrinsic informations.

(b) p0(0) = 1
3 , p0(1) = 2

3 , y = ABCD. We have Q1(0) = 3
29 , Q1(1) = 3

211 , Q2(0) =
5

3×29 , Q2(1) = 17
3×211 . Thus the “extrinsic information” for u1 is log Q1(0)

Q1(1) = 2, for u2 is

log Q2(0)
Q2(1) = log 20

17 ≈ 0.2345. Since log p0(0)
p0(1)

= −1, the a posteriori probability of u1 is 1
and that of u2 is log 10

17 ≈ −0.7655.

1.4 Every path from u to v that passes edge e consists of 3 parts: a path from u to x, the edge e
(which is from x to y), and a path from y to v. Thus

(a)

µe(u, v) =
∑
P :u

e7→v

w(P )

=
∑

P1:u 7→x

∑
P2:y 7→v

w(P1eP2)

=
∑

P1:u 7→x

∑
P2:y 7→v

w(P1)w(e)w(P2) (2)

=

 ∑
P1:u 7→x

w(P1)

 · w(e) ·

 ∑
P2:y 7→v

w(P2)

 (3)

= µ(u, x) · w(e) · µ(y, v).

(b) Suppose totally there are M paths from u to x and N paths from y to v. Then there
are MN paths from u to v that passes e. And suppose we already have those w(P1) and
w(P2). Equation (2) needs 2MN multiplications and MN − 1 additions. If we “lift” w(e)
out of the loop (that is, using the distribution law), (2) still needs MN+1 multiplications
and MN − 1 additions. However, equation (3) needs 2 multiplications and M + N − 2
additions. The computational savings are 2(MN −1) multiplications and (M −1)(N −1)
additions, for the first case, and MN − 1 multiplications and (M − 1)(N − 1) additions
for “lifting” w(e) out of the loop.

∗Example calculation for u1:

Q1(0) = Pr {Y = ABCD|X = 0000} p0(0) + Pr {Y = ABCD|X = 0111} p0(1)

=
1

2
· 1

4
· 1

8
· 1

8
· 1

2
+

1

2
· 1

8
· 1

4
· 1

2
· 1

2
=

5

210
,

Q1(1) = Pr {Y = ABCD|X = 1011} p0(0) + Pr {Y = ABCD|X = 1100} p0(1)

=
1

8
· 1

4
· 1

4
· 1

2
· 1

2
+

1

8
· 1

8
· 1

8
· 1

8
· 1

2
=

17

213
.
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