EE/Ma 127c Error-Correcting Codes - Homework Assignment 1

Ling Li, ling@cs.caltech.edu

April 10, 2001
1.1 Let $f(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{x^{2}}{2 \sigma^{2}}}$ denote the probability distribution function (pdf) of $\mathcal{N}\left(0, \sigma^{2}\right)$. When $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is sent, the probability that $\mathbf{y}=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ is received is

$$
p(\mathbf{y} \mid \mathbf{x})=\prod_{i=1}^{n} f\left(y_{i}-x_{i}\right)
$$

since $y_{i}=x_{i}+z_{i}$ and z_{i} are i.i.d. $\sim \mathcal{N}\left(0, \sigma^{2}\right)$. Assume all codewords are sent with equal probabilities. Then the maximum-likelihood decoding (MLD) is to find the codeword \mathbf{x} with maximal $p(\mathbf{y} \mid \mathbf{x})$, i.e., with minimal

$$
d(\mathbf{x}, \mathbf{y})=\sum_{i=1}^{n}\left(y_{i}-x_{i}\right)^{2} .
$$

The $(n, 1)$ repetition code has only two codewords, $(+1,+1, \ldots,+1)$ and $(-1,-1, \ldots,-1)$. Thus finding the minimal $d(\mathbf{x}, \mathbf{y})$ is equivalent to calculating the sign of

$$
\sum_{i=1}^{n}\left(y_{i}+1\right)^{2}-\sum_{i=1}^{n}\left(y_{i}-1\right)^{2}=4 \sum_{i=1}^{n} y_{i} .
$$

Below is an MLD algorithm for this code (and this channel):
(a) Calculate

$$
s=\sum_{i=1}^{n} y_{i}
$$

If $s>0$, the ML codeword is $(+1,+1, \ldots,+1)$; if $s<0$, the ML codeword is $(-1,-1, \ldots,-1)$; if $s=0$, there is a tie and we can use either codeword.
(b) By symmetry, assume the sent codeword is $(+1,+1, \ldots,+1)$. The decoder error probability is

$$
P_{e}=\operatorname{Pr}\{s \leq 0 \mid(+1,+1, \ldots,+1) \text { sent }\} .
$$

From $y_{i}=x_{i}+z_{i}=1+z_{i}, s=\sum y_{i}$ is a random variable $\sim \mathcal{N}\left(n, n \sigma^{2}\right)$. Thus

$$
\begin{equation*}
P_{e}=\operatorname{Pr}\{s-n \leq-n \mid(+1,+1, \ldots,+1) \text { sent }\}=Q\left(\frac{n}{\sqrt{n \sigma^{2}}}\right)=Q\left(\sqrt{2 \frac{E_{b}}{N_{0}}}\right) \tag{1}
\end{equation*}
$$

where $Q(x)=\frac{1}{\sqrt{2 \pi}} \int_{x}^{\infty} e^{-t^{2}} d t$.
(c) From (1), the performance of using $(n, 1)$ repetition code is just the same as that of uncoded BPSK, if $\frac{E_{b}}{N_{0}}$ remains the same.
1.2 Let $d_{\min }$ denote the minimum distance of the code. Let P denote a "best" interleaver (a permutation matrix that maximizes $\left.d_{\min }\right)$. The codeword with information \mathbf{u} is $(\mathbf{u} G, \mathbf{u} P G)$. For a specific input $\mathbf{u}=(1,0,0,0)$, whatever P is, $\mathbf{u} P$ is of weight 1 ; and since every row of G is of weight 2 , the encoder produces a codeword of weight 4 . Thus $d_{\min } \leq 4$.

In order to make $d_{\text {min }}=4$ (we do not know whether $d_{\text {min }}=4$ is achievable or not; however we can try), there should not be some non-zero codeword ($\mathbf{u} G, \mathbf{u} P G$) with weight less than 4. Notice that the weight of each row of G is even. Thus the weights of $\mathbf{u} G$ and $\mathbf{u} P G$ are also even. So we need only to ensure for any \mathbf{u}, if $\mathbf{u} G=\mathbf{0}$ then $\mathbf{u} P G$ is not of weight 2 , and if $\mathbf{u} P G=\mathbf{0}$, then $\mathbf{u} G$ is not of weight 2 .
$\mathbf{u} G=\mathbf{0}$ gives $\mathbf{u}=\mathbf{0}$ or $\mathbf{u}=(0,0,1,1) . \mathbf{u}=\mathbf{0}$ always gives $\mathbf{u} P G=\mathbf{0}$, which is not of weight 2. For $\mathbf{u}=(0,0,1,1)$, that $\mathbf{u P G}$ is not of weight 2 gives $\mathbf{u P}=(1,1,0,0)$ or $(0,0,1,1)$ (note that the weight of $\mathbf{u} P$ should also be 2). Thus P should be one of

$$
\left(\begin{array}{cccc}
0 & 0 & \cdots & \cdots \\
0 & 0 & \cdots & \cdots \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right),\left(\begin{array}{cccc}
0 & 0 & \cdots & \cdots \\
0 & 0 & \cdots & \cdots \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right),\left(\begin{array}{cccc}
\cdots & \cdots & 0 & 0 \\
\cdots & \cdots & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right),\left(\begin{array}{cccc}
\cdots & \cdots & 0 & 0 \\
\cdots & \cdots & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right) .
$$

Similarly, from $\mathbf{u} P G=\mathbf{0}$ and $\mathbf{u} G$ is not of weight 2 , we know P should be one of

$$
\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\cdots & \cdots & 0 & 0 \\
\cdots & \cdots & 0 & 0
\end{array}\right),\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
\cdots & \cdots & 0 & 0 \\
\cdots & \cdots & 0 & 0
\end{array}\right),\left(\begin{array}{cccc}
\cdots & \cdots & 0 & 0 \\
\cdots & \cdots & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right),\left(\begin{array}{cccc}
\cdots & \cdots & 0 & 0 \\
\cdots & \cdots & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right) .
$$

Thus there are eight choices for P, which denoted by the positions of 1's in each row, are $(1,2,3,4),(1,2,4,3),(2,1,3,4),(2,1,4,3),(3,4,1,2),(3,4,2,1),(4,3,1,2)$, and $(4,3,2,1)$.
However, the rank of G is 3 , and $\mathbf{u} G$ is the same if $u_{3}+u_{4}$ is the same. Thus in order to ensure the code has dimension 4, we have to "shift" u_{3} and/or u_{4} out of positions 3 and 4. Thus P can only be $(3,4,1,2),(3,4,2,1),(4,3,1,2)$, or $(4,3,2,1)$.
1.3 By Bayes' rule,

$$
\begin{aligned}
\operatorname{Pr}\left\{u_{i}=a \mid \mathbf{Y}=\mathbf{y}\right\} & =\frac{1}{\operatorname{Pr}\{\mathbf{Y}=\mathbf{y}\}} \sum_{\mathbf{u}: u_{i}=a} \operatorname{Pr}\{\mathbf{Y}=\mathbf{y} \mid \mathbf{U}=\mathbf{u}\} \operatorname{Pr}\{\mathbf{U}=\mathbf{u}\} \\
& =\frac{1}{\operatorname{Pr}\{\mathbf{Y}=\mathbf{y}\}} p^{0}(a) \sum_{\mathbf{u}: u_{i}=a} \operatorname{Pr}\{\mathbf{Y}=\mathbf{y} \mid \mathbf{X}=\mathbf{u} G\} \prod_{j \neq i} p^{0}\left(u_{j}\right)
\end{aligned}
$$

Let

$$
Q_{i}(a)=\sum_{\mathbf{u}: u_{i}=a} \operatorname{Pr}\{\mathbf{Y}=\mathbf{y} \mid \mathbf{X}=\mathbf{u} G\} \prod_{j \neq i} p^{0}\left(u_{j}\right) .
$$

That is,

$$
\begin{aligned}
& Q_{1}(a)=\operatorname{Pr}\{\mathbf{Y}=\mathbf{y} \mid \mathbf{X}=(a, 0) G\} p^{0}(0)+\operatorname{Pr}\{\mathbf{Y}=\mathbf{y} \mid \mathbf{X}=(a, 1) G\} p^{0}(1), \\
& Q_{2}(a)=\operatorname{Pr}\{\mathbf{Y}=\mathbf{y} \mid \mathbf{X}=(0, a) G\} p^{0}(0)+\operatorname{Pr}\{\mathbf{Y}=\mathbf{y} \mid \mathbf{X}=(1, a) G\} p^{0}(1)
\end{aligned}
$$

Then the a posteriori probability for u_{i} is (where $j \neq i$)

$$
\log \frac{\operatorname{Pr}\left\{u_{i}=0 \mid \mathbf{Y}=\mathbf{y}\right\}}{\operatorname{Pr}\left\{u_{i}=1 \mid \mathbf{Y}=\mathbf{y}\right\}}=\log \frac{p^{0}(0)}{p^{0}(1)}+\log \frac{Q_{i}(0)}{Q_{i}(1)}
$$

(a) $p^{0}(0)=p^{0}(1)=\frac{1}{2}, \mathbf{y}=A B C D$. We have* $Q_{1}(0)=\frac{5}{2^{10}}, Q_{1}(1)=\frac{17}{2^{13}}, Q_{2}(0)=\frac{3}{2^{10}}$, $Q_{2}(1)=\frac{33}{2^{13}}$. Thus the "extrinsic information" for u_{1} is $\log \frac{Q_{1}(0)}{Q_{1}(1)}=\log \frac{40}{17} \approx 1.2345$, for u_{2} is $\log \frac{Q_{2}(0)}{Q_{2}(1)}=\log \frac{8}{11} \approx-0.4594$. Since $\log \frac{p^{0}(0)}{p^{0}(1)}=0$, the a posteriori probabilities are equal to the extrinsic informations.
(b) $p^{0}(0)=\frac{1}{3}, p^{0}(1)=\frac{2}{3}, \mathbf{y}=A B C D$. We have $Q_{1}(0)=\frac{3}{2^{9}}, Q_{1}(1)=\frac{3}{2^{11}}, Q_{2}(0)=$ $\frac{5}{3 \times 2^{9}}, Q_{2}(1)=\frac{17}{3 \times 2^{11}}$. Thus the "extrinsic information" for u_{1} is $\log \frac{Q_{1}(0)}{Q_{1}(1)}=2$, for u_{2} is $\log \frac{Q_{2}(0)}{Q_{2}(1)}=\log \frac{20}{17} \approx 0.2345$. Since $\log \frac{p^{0}(0)}{p^{0}(1)}=-1$, the a posteriori probability of u_{1} is 1 and that of u_{2} is $\log \frac{10}{17} \approx-0.7655$.
1.4 Every path from u to v that passes edge e consists of 3 parts: a path from u to x, the edge e (which is from x to y), and a path from y to v. Thus
(a)

$$
\begin{align*}
\mu_{e}(u, v) & =\sum_{P: u \stackrel{e}{e}} w(P) \\
& =\sum_{P_{1}: u \mapsto x} \sum_{P_{2}: y \mapsto v} w\left(P_{1} e P_{2}\right) \\
& =\sum_{P_{1}: u \mapsto x} \sum_{P_{2}: y \mapsto v} w\left(P_{1}\right) w(e) w\left(P_{2}\right) \tag{2}\\
& =\left(\sum_{P_{1}: u \mapsto x} w\left(P_{1}\right)\right) \cdot w(e) \cdot\left(\sum_{P_{2}: y \mapsto v} w\left(P_{2}\right)\right) \tag{3}\\
& =\mu(u, x) \cdot w(e) \cdot \mu(y, v) .
\end{align*}
$$

(b) Suppose totally there are M paths from u to x and N paths from y to v. Then there are $M N$ paths from u to v that passes e. And suppose we already have those $w\left(P_{1}\right)$ and $w\left(P_{2}\right)$. Equation (2) needs $2 M N$ multiplications and $M N-1$ additions. If we "lift" $w(e)$ out of the loop (that is, using the distribution law), (2) still needs $M N+1$ multiplications and $M N-1$ additions. However, equation (3) needs 2 multiplications and $M+N-2$ additions. The computational savings are $2(M N-1)$ multiplications and $(M-1)(N-1)$ additions, for the first case, and $M N-1$ multiplications and $(M-1)(N-1)$ additions for "lifting" $w(e)$ out of the loop.

[^0]
[^0]: *Example calculation for u_{1} :

 $$
 \begin{aligned}
 Q_{1}(0) & =\operatorname{Pr}\{\mathbf{Y}=A B C D \mid \mathbf{X}=0000\} p^{0}(0)+\operatorname{Pr}\{\mathbf{Y}=A B C D \mid \mathbf{X}=0111\} p^{0}(1) \\
 & =\frac{1}{2} \cdot \frac{1}{4} \cdot \frac{1}{8} \cdot \frac{1}{8} \cdot \frac{1}{2}+\frac{1}{2} \cdot \frac{1}{8} \cdot \frac{1}{4} \cdot \frac{1}{2} \cdot \frac{1}{2}=\frac{5}{2^{10}}, \\
 Q_{1}(1) & =\operatorname{Pr}\{\mathbf{Y}=A B C D \mid \mathbf{X}=1011\} p^{0}(0)+\operatorname{Pr}\{\mathbf{Y}=A B C D \mid \mathbf{X}=1100\} p^{0}(1) \\
 & =\frac{1}{8} \cdot \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{2} \cdot \frac{1}{2}+\frac{1}{8} \cdot \frac{1}{8} \cdot \frac{1}{8} \cdot \frac{1}{8} \cdot \frac{1}{2}=\frac{17}{2^{13}} .
 \end{aligned}
 $$

