
EE/Ma 127b Error-Correcting Codes - Homework Assignment 3

Ling Li, ling@cs.caltech.edu

February 15, 2001

3.1 Extended R-S Code. The generator matrix is

G =


1 1 · · · 1 0
α0 α1 · · · αn−1 0
...

...
...

...
...

αk−2
0 αk−2

1 · · · αk−2
n−1 0

αk−1
0 αk−1

1 · · · αk−1
n−1 1

 ,

and the codeword is

xG = (I0, I1, . . . , Ik−1)G.

Thus this is a linear code with codeword length (n+ 1). Consider the matrix G′ formed from
the left-most (k−1) columns and the right-most column of G. From Vandemonde determinant
theorem, we have

det(G′) = det


1 · · · 1 0
α0 · · · αk−2 0
...

...
...

...
αk−2

0 · · · αk−2
k−2 0

αk−1
0 · · · αk−1

k−2 1

 = det


1 · · · 1
α0 · · · αk−2
...

...
...

αk−2
0 · · · αk−2

k−2

 =
∏

0≤i<j≤k−2

(αj − αi),

which is non-zero. Thus the dimension of the code is k.

If Ik−1 6= 0, the polynomial P (x) = I0 + I1 + · · · + Ik−1x
k−1 has at most (k − 1) roots; If

Ik−1 = 0, then P (x) has at most (k − 2) roots. In either case,

(P (α0), P (α1), . . . , P (αn−1), P (∞))

has at most (k − 1) zeros, if not all the elements are zeros. So the minimum nonzero weight is
no less than (n+ 1)− (k − 1) = n− k + 2. However, we know that dmin ≤ r + 1 = n− k + 2.
Thus for this code, the equality holds. So it is an (n+ 1, k) MDS code.

3.2 Wicker Theorem 8.5 says

Aw =
(
n

w

)
(q − 1)

w−dmin∑
i=0

(−1)i
(
w − 1
i

)
qw−i−dmin . (1)

1



Note that for MDS code, dmin = n − k + 1. Since we use t = n − w, we have w − dmin =
n− dmin − t = k − t− 1. Thus (1) is

Aw =
(
n

w

)
(q − 1)

k−t−1∑
i=0

(−1)i
(
w − 1
i

)
qk−t−1−i

=
(
n

w

)[k−t−1∑
i=0

(−1)i
(
w − 1
i

)
qk−t−i −

k−t−1∑
i=0

(−1)i
(
w − 1
i

)
qk−t−1−i

]

=
(
n

w

)[k−t−1∑
i=0

(−1)i
(
w − 1
i

)(
qk−t−i − 1

)
−
k−t−1∑
i=0

(−1)i
(
w − 1
i

)(
qk−t−1−i − 1

)]

=
(
n

w

)[k−t−1∑
i=0

(−1)i
(
w − 1
i

)(
qk−t−i − 1

)
+

k−t∑
i=1

(−1)i
(
w − 1
i− 1

)(
qk−t−i − 1

)]

=
(
n

w

)[(
qk−t − 1

)
+
k−t−1∑
i=1

(−1)i
[(
w − 1
i

)
+
(
w − 1
i− 1

)](
qk−t−i − 1

)]

=
(
n

w

) k−t−1∑
i=0

(−1)i
(
w

i

)(
qk−t−i − 1

)
.

Thus we get the version in the problem.

3.3 Frequency domain. n = 31, k = 15, r = 16, t = 8. σ(x) = 1 means σi = 0 for i > 0. Since
we use Sj =

∑d
i=1 σiSj−i to calculate Sj for 2t < j < n and j = 0, we get Sj = 0 for those

j. If the decoding algorithm verifies the S by calculating Sj for t more times,1 it would know
that the received word is not decodable — the number of errors exceeds r/2. However, if the
decoder doesn’t verify S and continue the decoding, we will get (see the footnote for why j is
from 1 to t.)

Ei =
n−1∑
j=0

Sjα
−ij =

t∑
j=1

n−1∑
k=0

Rkα
(k−i)j =

n−1∑
k=0

Rk

t∑
j=1

α(k−i)j

and C = R− E. However, this is a decoder error and C is not the correct codeword.

3.4 Decoding error. n = 31, k = 15, r = 16. Received word R.

(a) e0 = 16, e1 = 1. Since any subset of k columns in an MDS code is independent, the
decoder would consider this case as e′1 = 0 and recover the whole codeword from R (15
unerased symbols). Thus the decoder error always happens and the probability therefore
is 1.

(b) e0 = 15, e1 = 1. The decoder error happens if the decoder returns a codeword with
e′1 ≤ r−e0

2 = 1
2 . That is, there’s an error iff the decoder returns a codeword exactly the

same as R (in the 16 unerased positions). However, since e1 = 1 and the codeword can
be decided by the 15 correct symbols, there’s no codeword exactly the same as R. Thus
the possibility of decoder error is 0.

1Since we now get the whole S, we can calculate S1 ∼ St by other part of S and then we can compare these
calculated S1 ∼ St with those we have already got. If they do not match, we say the verification fails. For this
problem, σ(x)S(x) ≡ ω(x) (mod x2t) and degω(x) ≤ t− 1 gives degS(x) ≤ t− 1. And S(x) 6= 0, since the algorithm
would exit and say “no errors occurred” if S(x) = 0. However, the calculated S1 ∼ St will be all zeros. So the
verification must fail.

2



(c) e0 = 14, e1 = 2. e′1 ≤ r−e0
2 = 1. Consider a codeword C ′ that differs from R by only 1

position. (We know it is impossible to have a codeword that exactly the same as R.) Let
C be the real codeword for R. From d(C,C ′) ≤ d(C,R) + d(C ′, R) ≤ e0 + e1 + e′1 = 17,
and the minimum distance between different codewords is r + 1 = 17, we know C and
C ′ have exactly 14 positions in common, and the position where R differs from C ′ is not
among the positions where R differs from C (i.e., not among the error positions), if we
don’t consider the erasures.
We want to find out what kind of errors in R will result a C ′. For any given C and e0

erasure and e1 error positions, R has (p − 1)e1 choices, where p is the size of the field.
(In our project, p = 32.) C ′ can be constructed by: replacing an arbitrary symbol out
of the 15 correct positions of C by any other symbol and using it together with other 14
correct symbols to decide C ′. The two symbols of C ′ with positions that have errors in
R are those can result a decoder error. The number of different C ′ is (p − 1) × 15, and
this is also the number of different two symbols that can result decoder errors.2 So the
possibility of decoder error is

15
p− 1

=
15
31
.

2If two codewords C′ and C′′ are the same in the two error positions, and either of them has only 1 symbol different
from C in the 15 correct positions, the number of common positions of C′ and C′′ is no less than (15− 1− 1) + 2 = 15.
This shows C′ = C′′.

3


