EE/Ma 127b Error-Correcting Codes - Homework Assignment 3

Ling Li, ling@cs.caltech.edu
February 15, 2001
3.1 Extended R-S Code. The generator matrix is

$$
G=\left(\begin{array}{ccccc}
1 & 1 & \cdots & 1 & 0 \\
\alpha_{0} & \alpha_{1} & \cdots & \alpha_{n-1} & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\alpha_{0}^{k-2} & \alpha_{1}^{k-2} & \cdots & \alpha_{n-1}^{k-2} & 0 \\
\alpha_{0}^{k-1} & \alpha_{1}^{k-1} & \cdots & \alpha_{n-1}^{k-1} & 1
\end{array}\right)
$$

and the codeword is

$$
x G=\left(I_{0}, I_{1}, \ldots, I_{k-1}\right) G
$$

Thus this is a linear code with codeword length $(n+1)$. Consider the matrix G^{\prime} formed from the left-most $(k-1)$ columns and the right-most column of G. From Vandemonde determinant theorem, we have

$$
\operatorname{det}\left(G^{\prime}\right)=\operatorname{det}\left(\begin{array}{cccc}
1 & \cdots & 1 & 0 \\
\alpha_{0} & \cdots & \alpha_{k-2} & 0 \\
\vdots & \vdots & \vdots & \vdots \\
\alpha_{0}^{k-2} & \cdots & \alpha_{k-2}^{k-2} & 0 \\
\alpha_{0}^{k-1} & \cdots & \alpha_{k-2}^{k-1} & 1
\end{array}\right)=\operatorname{det}\left(\begin{array}{ccc}
1 & \cdots & 1 \\
\alpha_{0} & \cdots & \alpha_{k-2} \\
\vdots & \vdots & \vdots \\
\alpha_{0}^{k-2} & \cdots & \alpha_{k-2}^{k-2}
\end{array}\right)=\prod_{0 \leq i<j \leq k-2}\left(\alpha_{j}-\alpha_{i}\right)
$$

which is non-zero. Thus the dimension of the code is k.
If $I_{k-1} \neq 0$, the polynomial $P(x)=I_{0}+I_{1}+\cdots+I_{k-1} x^{k-1}$ has at most $(k-1)$ roots; If $I_{k-1}=0$, then $P(x)$ has at most $(k-2)$ roots. In either case,

$$
\left(P\left(\alpha_{0}\right), P\left(\alpha_{1}\right), \ldots, P\left(\alpha_{n-1}\right), P(\infty)\right)
$$

has at most $(k-1)$ zeros, if not all the elements are zeros. So the minimum nonzero weight is no less than $(n+1)-(k-1)=n-k+2$. However, we know that $d_{\text {min }} \leq r+1=n-k+2$. Thus for this code, the equality holds. So it is an $(n+1, k)$ MDS code.
3.2 Wicker Theorem 8.5 says

$$
\begin{equation*}
A_{w}=\binom{n}{w}(q-1) \sum_{i=0}^{w-d_{\min }}(-1)^{i}\binom{w-1}{i} q^{w-i-d_{\min }} \tag{1}
\end{equation*}
$$

Note that for MDS code, $d_{\min }=n-k+1$. Since we use $t=n-w$, we have $w-d_{\min }=$ $n-d_{\text {min }}-t=k-t-1$. Thus (1) is

$$
\begin{aligned}
A_{w} & =\binom{n}{w}(q-1) \sum_{i=0}^{k-t-1}(-1)^{i}\binom{w-1}{i} q^{k-t-1-i} \\
& =\binom{n}{w}\left[\sum_{i=0}^{k-t-1}(-1)^{i}\binom{w-1}{i} q^{k-t-i}-\sum_{i=0}^{k-t-1}(-1)^{i}\binom{w-1}{i} q^{k-t-1-i}\right] \\
& =\binom{n}{w}\left[\sum_{i=0}^{k-t-1}(-1)^{i}\binom{w-1}{i}\left(q^{k-t-i}-1\right)-\sum_{i=0}^{k-t-1}(-1)^{i}\binom{w-1}{i}\left(q^{k-t-1-i}-1\right)\right] \\
& =\binom{n}{w}\left[\sum_{i=0}^{k-t-1}(-1)^{i}\binom{w-1}{i}\left(q^{k-t-i}-1\right)+\sum_{i=1}^{k-t}(-1)^{i}\binom{w-1}{i-1}\left(q^{k-t-i}-1\right)\right] \\
& =\binom{n}{w}\left[\left(q^{k-t}-1\right)+\sum_{i=1}^{k-t-1}(-1)^{i}\left[\binom{w-1}{i}+\binom{w-1}{i-1}\right]\left(q^{k-t-i}-1\right)\right] \\
& =\binom{n}{w} \sum_{i=0}^{k-t-1}(-1)^{i}\binom{w}{i}\left(q^{k-t-i}-1\right) .
\end{aligned}
$$

Thus we get the version in the problem.
3.3 Frequency domain. $n=31, k=15, r=16, t=8$. $\sigma(x)=1$ means $\sigma_{i}=0$ for $i>0$. Since we use $S_{j}=\sum_{i=1}^{d} \sigma_{i} S_{j-i}$ to calculate S_{j} for $2 t<j<n$ and $j=0$, we get $S_{j}=0$ for those j. If the decoding algorithm verifies the S by calculating S_{j} for t more times, ${ }^{1}$ it would know that the received word is not decodable - the number of errors exceeds $r / 2$. However, if the decoder doesn't verify S and continue the decoding, we will get (see the footnote for why j is from 1 to t.)

$$
E_{i}=\sum_{j=0}^{n-1} S_{j} \alpha^{-i j}=\sum_{j=1}^{t} \sum_{k=0}^{n-1} R_{k} \alpha^{(k-i) j}=\sum_{k=0}^{n-1} R_{k} \sum_{j=1}^{t} \alpha^{(k-i) j}
$$

and $C=R-E$. However, this is a decoder error and C is not the correct codeword.
3.4 Decoding error. $n=31, k=15, r=16$. Received word R.
(a) $e_{0}=16, e_{1}=1$. Since any subset of k columns in an MDS code is independent, the decoder would consider this case as $e_{1}^{\prime}=0$ and recover the whole codeword from R (15 unerased symbols). Thus the decoder error always happens and the probability therefore is 1 .
(b) $e_{0}=15, e_{1}=1$. The decoder error happens if the decoder returns a codeword with $e_{1}^{\prime} \leq \frac{r-e_{0}}{2}=\frac{1}{2}$. That is, there's an error iff the decoder returns a codeword exactly the same as R (in the 16 unerased positions). However, since $e_{1}=1$ and the codeword can be decided by the 15 correct symbols, there's no codeword exactly the same as R. Thus the possibility of decoder error is 0 .

[^0](c) $e_{0}=14, e_{1}=2 . e_{1}^{\prime} \leq \frac{r-e_{0}}{2}=1$. Consider a codeword C^{\prime} that differs from R by only 1 position. (We know it is impossible to have a codeword that exactly the same as R.) Let C be the real codeword for R. From $d\left(C, C^{\prime}\right) \leq d(C, R)+d\left(C^{\prime}, R\right) \leq e_{0}+e_{1}+e_{1}^{\prime}=17$, and the minimum distance between different codewords is $r+1=17$, we know C and C^{\prime} have exactly 14 positions in common, and the position where R differs from C^{\prime} is not among the positions where R differs from C (i.e., not among the error positions), if we don't consider the erasures.
We want to find out what kind of errors in R will result a C^{\prime}. For any given C and e_{0} erasure and e_{1} error positions, R has $(p-1)^{e_{1}}$ choices, where p is the size of the field. (In our project, $p=32$.) C^{\prime} can be constructed by: replacing an arbitrary symbol out of the 15 correct positions of C by any other symbol and using it together with other 14 correct symbols to decide C^{\prime}. The two symbols of C^{\prime} with positions that have errors in R are those can result a decoder error. The number of different C^{\prime} is $(p-1) \times 15$, and this is also the number of different two symbols that can result decoder errors. ${ }^{2}$ So the possibility of decoder error is
$$
\frac{15}{p-1}=\frac{15}{31} .
$$

[^1]
[^0]: ${ }^{1}$ Since we now get the whole S, we can calculate $S_{1} \sim S_{t}$ by other part of S and then we can compare these calculated $S_{1} \sim S_{t}$ with those we have already got. If they do not match, we say the verification fails. For this problem, $\sigma(x) S(x) \equiv \omega(x)\left(\bmod x^{2 t}\right)$ and $\operatorname{deg} \omega(x) \leq t-1$ gives $\operatorname{deg} S(x) \leq t-1$. And $S(x) \neq 0$, since the algorithm would exit and say "no errors occurred" if $S(x)=0$. However, the calculated $S_{1} \sim S_{t}$ will be all zeros. So the verification must fail.

[^1]: ${ }^{2}$ If two codewords C^{\prime} and $C^{\prime \prime}$ are the same in the two error positions, and either of them has only 1 symbol different from C in the 15 correct positions, the number of common positions of C^{\prime} and $C^{\prime \prime}$ is no less than $(15-1-1)+2=15$. This shows $C^{\prime}=C^{\prime \prime}$.

