EE/Ma 127b Error-Correcting Codes - Homework Assignment 2

Ling Li, ling@cs.caltech.edu

February 1, 2001
2.1 DFT of phase-shifted vector. Let $\mathbf{W}=\mathbf{V}_{\mu}=\left(V_{0}, V_{1} \alpha^{\mu}, \ldots, V_{n-1} \alpha^{\mu(n-1)}\right)$, i.e., $W_{i}=V_{i} \alpha^{i \mu}$. From

$$
\widehat{V}_{j}=\sum_{i=0}^{n-1} V_{i} \alpha^{i j},
$$

and

$$
\widehat{W}_{j}=\sum_{i=0}^{n-1} W_{i} \alpha^{i j}=\sum_{i=0}^{n-1} V_{i} \alpha^{i(\mu+j)},
$$

we find that $\widehat{W}_{j}=\widehat{V}_{\mu+j}$, since the subscripts are taken $\bmod n$, and $\operatorname{ord}(\alpha)$ is also n. Thus

$$
\widehat{\mathbf{V}}_{\mu}=\widehat{\mathbf{W}}=\left(\widehat{W}_{0}, \widehat{W}_{1}, \ldots, \widehat{W}_{n-1}\right)=\left(\widehat{V}_{\mu}, \widehat{V}_{\mu+1}, \ldots, \widehat{V}_{\mu+n-1}\right) .
$$

2.2 $\beta=\alpha^{3}, \mathbf{V}=\left(0, \beta^{4}, \beta^{5}, 0, \beta^{7}\right)=\left(0, \beta^{4}, 1,0, \beta^{2}\right)$. The polynomial $V(x)$ is

$$
V(x)=\beta^{4} x+x^{2}+\beta^{2} x^{4} .
$$

Using $\widehat{V}_{j}=V\left(\beta^{j}\right)$, we can calculate the DFT of \mathbf{V} :

$$
\begin{aligned}
\widehat{V}_{0}= & \beta^{4}+1+\beta^{2}=[0010]=\alpha, \\
\widehat{V}_{1}= & \beta^{5}+\beta^{2}+\beta^{6}=[0101]=\alpha^{8}, \\
\widehat{V}_{2}= & \beta^{6}+\beta^{4}+\beta^{10}=[0110]=\alpha^{5}, \\
\widehat{V}_{3}= & \beta^{7}+\beta^{6}+\beta^{14}=[1011]=\alpha^{7}, \\
\widehat{V}_{4}= & \beta^{8}+\beta^{8}+\beta^{18}=\beta^{3}=\alpha^{9}, \\
& \widehat{\mathbf{V}}=\left(\alpha, \alpha^{8}, \alpha^{5}, \alpha^{7}, \alpha^{9}\right) .
\end{aligned}
$$

The support set of \mathbf{V} is $I=\{1,2,4\}$, so the locator polynomial for \mathbf{V} is

$$
\sigma_{\mathbf{V}}(x)=(1+\beta x)\left(1+\beta^{2} x\right)\left(1+\beta^{4} x\right)=1+\alpha^{7} x+\alpha^{4} x^{2}+\alpha^{6} x^{3}
$$

and the polynomials $\sigma_{\mathbf{V}}^{(i)}(x)$ for $i=1,2,4$ are

$$
\begin{aligned}
\sigma_{\mathbf{V}}^{(1)}(x) & =\left(1+\beta^{2} x\right)\left(1+\beta^{4} x\right)=1+\alpha^{4} x+\alpha^{3} x^{2} \\
\sigma_{\mathbf{V}}^{(2)}(x) & =(1+\beta x)\left(1+\beta^{4} x\right)=1+\alpha^{10} x+x^{2} \\
\sigma_{\mathbf{V}}^{(4)}(x) & =(1+\beta x)\left(1+\beta^{2} x\right)=1+\alpha^{2} x+\alpha^{9} x^{2} .
\end{aligned}
$$

The evaluator polynomial is

$$
\omega_{\mathbf{V}}(x)=\beta^{4} \sigma_{\mathbf{V}}^{(1)}(x)+\sigma_{\mathbf{V}}^{(2)}(x)+\beta^{2} \sigma_{\mathbf{V}}^{(4)}(x)=\alpha+x^{2}
$$

We can calculate

$$
\sigma_{\mathbf{V}}(x) \widehat{V}(x)=\alpha+x^{2}+\alpha x^{5}+x^{7}
$$

and (here $n=\operatorname{ord}(\beta)=5$)

$$
\omega_{\mathbf{V}}(x)\left(1-x^{n}\right)=\alpha+x^{2}+\alpha x^{5}+x^{7}
$$

Thus the key equation $\sigma_{\mathbf{V}}(x) \widehat{V}(x)=\omega_{\mathbf{V}}(x)\left(1-x^{n}\right)$ also holds here.
2.3 Let α be a primitive root in $\operatorname{GF}(8)$ satisfying $\alpha^{3}=\alpha+1$, and let $\mathbf{V}=(\alpha, 1,0,0,0,0,0)$. The support set of \mathbf{V} is $I=\{0,1\}$. Thus the locator polynomial is

$$
\sigma(x)=(1-x)(1-\alpha x)=1+\alpha^{3} x+\alpha x^{2}
$$

and the evaluator polynomial is

$$
\omega(x)=\alpha(1-\alpha x)+1(1-x)=\alpha^{3}+\alpha^{6} x
$$

The component of $\widehat{\mathbf{V}}$ is $\widehat{V}_{j}=\alpha+\alpha^{j}$, so

$$
\widehat{\mathbf{V}}=\left(\alpha^{3}, 0, \alpha^{4}, 1, \alpha^{2}, \alpha^{6}, \alpha^{5}\right)
$$

Since

$$
\alpha^{3}\left(\alpha+\alpha^{j-1}\right)+\alpha\left(\alpha+\alpha^{j-2}\right)=\left(\alpha^{4}+\alpha^{2}\right)+\alpha^{j-1}\left(\alpha^{3}+1\right)=\alpha+\alpha^{j}
$$

we verified that

$$
\widehat{V}_{j}=-\sum_{i=1}^{2} \sigma_{i} \widehat{V}_{j-i}=\alpha^{3} \widehat{V}_{j-1}+\alpha \widehat{V}_{j-2}
$$

$2.4 R$-S Decoding. $n=7, r=4, \mathbf{R}=\left(\alpha^{3}, 1, \alpha, \alpha^{2}, \alpha^{3}, \alpha, 1\right)$. The syndrome polynomial is

$$
S(x)=\alpha^{2}+\alpha^{6} x+\alpha^{5} x^{2}+\alpha^{6} x^{3}
$$

The $\operatorname{gcd}\left(x^{r}, S(x)\right)$ gives

i	u_{i}	v_{i}	r_{i}	q_{i}
-1	1	0	x^{4}	-
0	0	1	$\alpha^{2}+\alpha^{6} x+\alpha^{5} x^{2}+\alpha^{6} x^{3}$	-
1	1	$1+\alpha x$	$\alpha^{2}+\alpha^{4} x+\alpha^{4} x^{2}$	$1+\alpha x$
2	$\alpha^{4}+\alpha^{2} x$	$\alpha^{5}+\alpha^{3} x+\alpha^{3} x^{2}$	$1+x$	$\alpha^{4}+\alpha^{2} x$

By $\operatorname{deg} \sigma(x) \leq 2$ and $\operatorname{deg} \omega(x) \leq 1$, we get

$$
\sigma(x)=v_{2}(x) / \alpha^{5}=1+\alpha^{5} x+\alpha^{5} x^{2}, \quad \omega(x)=r_{2} / \alpha^{5}=\alpha^{2}+\alpha^{2} x
$$

Then we can use either frequency domain or time domain to complete the decoding.
(a) Frequency domain. Using $S_{i}=-\left(\sigma_{1} S_{i-1}+\sigma_{2} S_{i-2}\right)=\alpha^{5}\left(S_{i-1}+S_{i-2}\right)$, we have $\widehat{\mathbf{E}}=\mathbf{S}=$ $\left(\alpha^{4}, \alpha^{2}, \alpha^{6}, \alpha^{5}, \alpha^{6}, \alpha^{6}, 0\right)$. So $\mathbf{E}=\left(0,0, \alpha, \alpha^{2}, 0,0,0\right)$ and the codeword is

$$
\mathbf{C}=\mathbf{R}-\mathbf{E}=\left(\alpha^{3}, 1,0,0, \alpha^{3}, \alpha, 1\right)
$$

(b) Time domain. Since $\sigma(x)=1+\alpha^{5} x+\alpha^{5} x^{2}=\left(1+\alpha^{2} x\right)\left(1+\alpha^{3} x\right)$, we have $\sigma\left(\alpha^{-2}\right)=$ $\sigma\left(\alpha^{-3}\right)=0$ and

$$
E_{2}=-\frac{\omega\left(\alpha^{-2}\right)}{\sigma^{\prime}\left(\alpha^{-2}\right)}=\frac{1+\alpha^{2}}{\alpha^{5}}=\alpha, \quad E_{3}=-\frac{\omega\left(\alpha^{-3}\right)}{\sigma^{\prime}\left(\alpha^{-3}\right)}=\frac{1+\alpha^{6}}{\alpha^{5}}=\alpha^{2} .
$$

Thus we also get $\mathbf{C}=\mathbf{R}-\mathbf{E}=\left(\alpha^{3}, 1,0,0, \alpha^{3}, \alpha, 1\right)$.
2.5 $\mathbf{R}=\left(1, \alpha, \alpha^{2}, *, *, *, *\right), r=4$. The erasure locator polynomial is

$$
\begin{equation*}
\sigma_{0}(x)=\left(1+\alpha^{3} x\right)\left(1+\alpha^{4} x\right)\left(1+\alpha^{5} x\right)\left(1+\alpha^{6} x\right)=1+\alpha^{5} x+\alpha^{4} x^{2}+x^{3}+\alpha^{4} x^{4} \tag{1}
\end{equation*}
$$

and the modified received vector $\mathbf{R}^{\prime}=\left(1, \alpha, \alpha^{2}, 0,0,0,0\right)$. Using \mathbf{R}^{\prime}, we have $S(x)=\alpha^{3}+$ $\alpha^{5} x+\alpha^{6} x^{2}+\alpha^{6} x^{3}$. Thus

$$
S_{0}(x)=S(x) \sigma_{0}(x) \bmod x^{4}=\alpha^{3}+\alpha^{6} x+\alpha^{5} x^{2}+\alpha^{2} x^{3}
$$

Since the number of erasures is 4 and $r=4$, we have in the key equation

$$
\sigma_{1}(x) S_{0}(x) \equiv \omega(x) \quad\left(\bmod x^{r}\right),
$$

$\operatorname{deg} \sigma_{1}(x) \leq 0$ and $\operatorname{deg} \omega(x) \leq 3$. Thus $\sigma_{1}(x)=1$ and $\omega(x)=S_{0}(x)$, and finally

$$
\begin{equation*}
\sigma(x)=\sigma_{0}(x) \sigma_{1}(x)=\sigma_{0}(x) . \tag{2}
\end{equation*}
$$

Then we can use either frequency domain or time domain to complete the decoding.
(a) Frequency domain. Using $S_{i}=\alpha^{5} S_{i-1}+\alpha^{4} S_{i-2}+S_{i-3}+\alpha^{4} S_{i-4}$, we have $\widehat{\mathbf{E}}=\mathbf{S}=$ $\left(\alpha^{5}, \alpha^{3}, \alpha^{5}, \alpha^{6}, \alpha^{6}, \alpha^{3}, 0\right)$. So $\mathbf{E}=\left(0,0,0, \alpha^{3}, \alpha^{4}, \alpha^{5}, \alpha^{6}\right)$ and the codeword is

$$
\mathbf{C}=\mathbf{R}-\mathbf{E}=\left(1, \alpha, \alpha^{2}, \alpha^{3}, \alpha^{4}, \alpha^{5}, \alpha^{6}\right) .
$$

(b) Time domain. From (1) and (2), we have for $i \in\{3,4,5,6\}, \sigma\left(\alpha^{-i}\right)=0$. Note that $\sigma^{\prime}(x)=\alpha^{5}+x^{2}$, so

$$
\begin{array}{ll}
E_{3}=-\frac{\omega\left(\alpha^{-3}\right)}{\sigma^{\prime}\left(\alpha^{-3}\right)}=\frac{\alpha^{2}}{\alpha^{6}}=\alpha^{3}, & E_{4}=-\frac{\omega\left(\alpha^{-4}\right)}{\sigma^{\prime}\left(\alpha^{-4}\right)}=\frac{\alpha^{5}}{\alpha}=\alpha^{4}, \\
E_{5}=-\frac{\omega\left(\alpha^{-5}\right)}{\sigma^{\prime}\left(\alpha^{-5}\right)}=\frac{\alpha^{5}}{1}=\alpha^{5}, & E_{6}=-\frac{\omega\left(\alpha^{-6}\right)}{\sigma^{\prime}\left(\alpha^{-6}\right)}=\frac{\alpha^{2}}{\alpha^{3}}=\alpha^{6} .
\end{array}
$$

Thus we also get $\mathbf{C}=\left(1, \alpha, \alpha^{2}, \alpha^{3}, \alpha^{4}, \alpha^{5}, \alpha^{6}\right)$.

