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Broadcast capacity depends only on the conditional marginals. (W1, Wa) £ (W, Wa) iff Wy #
Wi or W %+ Wa. That is, the event (W1, W) # (Wi, Ws) is the union of the two events
W1 75 W1 and W2 7'5 WQ. Thus

max {Pl(n), Pz(n)} < p) < Pl(n) + PZ(n).

Hence P — 0 when n — oo iff Pl(n) — 0 and PQ(n) — 0 when n — 0.

The probability of error P does depend on the conditional joint distribution p(y1,y2|T).

However, Pl(n) and PQ(n) only depends on the conditional marginal distributions p(y;|z) and
p(y2|x) respectively. Hence if for a particular broadcast channel, we have a sequence of codes

with P(™ — 0, (so Pl(n) — 0 and P2(n) — 0,) then using the same codes for any broadcast
channel with the same conditional marginals will also ensure P(™ — 0 for that channel. Thus
the capacity region for a broadcast channel depends only on the conditional marginals.

Converse for the degraded broadcast channel.
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(a) from the chain rule for mutual information,

(b) from the definition of conditional mutual information,

(¢) from conditioning reduces entropy, (removing conditioning increases entropy as well,)
(d) from the fact that Z; is conditional independent of Z*~! given Y=,

(e) from the definitions of U; and mutual information.
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Continuation of converse.
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(f) from I(Wy; Y™ Wy) — I(W1; Y™) = I(Wy; Wa|Y™) >0,

(g) from the chain rule for mutual information and the fact that W; and W5 are independent,
(h) from the chain rule for mutual information,

(i) from Wi — X; — Y; is a Markov chain given U; = (Y*~!, W3) and the data processing
inequality.

Degraded broadcast channel. The cardinality of the auxiliary random variable U is binary since
X and Y; are binary and Y5 are ternary. By symmetry, we connect U to X by another BSC
with parameter (3.

Let ¢ = Pr{X = 1}. The distribution of Y5 is
Pri{Ys} ={(1-a)(1—gq*p),a,(1-a)(g*p)},
where ¢ *p = q(1 —p) + (1 — q)p. Hence
H(Y;) = —(1—-a)1—qxp)[log(l—a)+log(l—gxp)]—aloga

(1~ ) (q +p) os(1 — 0) +1og (q.+ )]
= —aloga—(1—a)log(l—a)
— (1 =) [(1 = gx*p)log(l —qxp)+(q*p)log(q*p)]
= H(a)+ (1 —-a)H(g*p), (1)
It is clear that ¢ = % gives the maximal H(Y3) since now g*p = %, and when @ < 1 and p # %,
maximizing H (Y3) requires g = % And g = % iff U is uniformly distributed on {0, 1}. Also by
(1), we get
HY>U) = Pr{U=0}HY2)g=p +Pr{U =1} H(Y2)4=1-5
= H(a)+ (1 —a)H(Bxp),
since (1 —03)*p=1—Fx*pthus H((1 — ) *p) = H(B*p). Thus
IU;Y2) = H(Y2) = H(Y2|U) = (1 — ) (H(g x p) — H(B *p)) -
And the uniform distribution of U gives I(U;Y2) = (1 —«a) (1 — H(G = p)).
Similarly,
I(X;YhU) = HWU)-HMW|X,U)
= HW1|U)— H(Y1]/X) since Y7 and U are independent given X
= H(Bxp)—H(p).
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Thus the capacity region for this channel is the convex hull of all rate pairs (R1, Re) satisfying

[Ri<H(Bxp)—H(p), Ry<(l-a)(l-H(B*p)),

for some (3. Note that % p can be any value between p and (1 — p), so H(( x p) can be any
value between H (p) and 1. So the capacity region is exactly a triangular (when a < 1):
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[ <1-— H(p).
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When o = 1, no information can be sent (Ry = 0) since Y3 is a constant. And the capacity
region now is just ‘Rl < H(B*p)— H(p) and Ry =0 ‘

Channels with unknown parameters. Without loss of generality, assume p; < po. First, devise
two codes X7 and X¥ for p; and ps respectively, under the assumption that the receiver knows
which one will be used. The alphabet size is 2°¢(P1) for X7 and 2"¢(2) for X3. Then insert a
sequence of 1’s before each codewords in X{" and X7, as the prefix. The number of 1’s inserted
for each codeword is K = [logn|. The receiver count the number of 1’s in the first K bits of the
received codewords (denote the number as X). If X < %K , then the receiver uses p = pq;
otherwise uses p = p2. From the Chebyshev’s inequality, when p; is used in the channel,

— 1—
pr{x > MK} < Pr{|X—p1K| > MK} < mliop)
2 2 (p2 —p1)?K
and while ps is used,
p1+ D2 P2 — P1 p2(1 —p2)
Pr¢e X <—K; <Pr X—pKz—K}§4.
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Thus the probability that the receiver takes a wrong p is tends to 0 when n — oo. And the
rate is

nC(p;) 1
= C(pi) - 1 ke

— C(pi) when n — oo,

if p=p; is used (i =1, 2).
Two-way channel.

(a) For some product distribution p(x1)p(x2)p(y1,y2|x1,x2), randomly design two indepen-
dent codes for W7 and Ws. Since receiver 1 (Y7) could know X; exactly, the channel
from the standpoint of Y7 is a multiple access channel with inputs X7, Xs and output
(X1,Y7), in which X is transmitted through an error-free channel. Applying the analy-
sis for achievability in a multiple access channel here, we get the following rate region is

achievable:
Ry < I(X1;X1,Y1]X2), (2)
Ry < I(Xg;X1,Y1|X1), (3)
Ri+ Ry < I(X1,X2;X1,Y1). (4)



(4) is superfluous since

I(Xl,XQ;Xl,Yl) = I(Xl;Xl,Yl)—I—I(Xg;Xl,Yl‘Xl)
> I(Xl;Xl,Yl‘XQ)—I—I(Xg;Xl,Yl‘Xl).

Hence (4) is satisfied if (2) and (3) are satisfied. By I(X1;Y1]|X1, X2) = 0 and X; and Xy
are independet,

I(X1; X1, Y1|X2) = I(X1; X1|X2) + I(X1; Y1 X1, Xo) = H(X1).

So (2) becomes Ry < H(X;), which must be satisfied if ‘Rl < I(X1; Y2 X5)|, since

I(X1;Y3|X9) < H(X1|X2) = H(Xy). Similarly,

I(XQ;Xl,Y1|X1) = I(Xg; Yl‘Xl) + I(XQ;X1|X1,Y1) = I(XQ; Y1|X1)

So (3) becomes ‘Rg < I[(X9;Y1]X7) ‘

The same analysis can be repeated from the standpoint of Y5. Thus we conclude that the
following rate region is achievable:

Ry < I(X1;Y2|Xo),
Ry < I(XQ;Y1|X1).

Using Theorem 14.10.1 in Cover’s book, we have

if the rate pair (Ry, R2) is achievable.



