EE/Ma 126b Information Theory - Homework Set \#7

Ling Li, ling@cs.caltech.edu
March 7, 2001
7.1 Broadcast capacity depends only on the conditional marginals. $\left(\hat{W}_{1}, \hat{W}_{2}\right) \neq\left(W_{1}, W_{2}\right)$ iff $\hat{W}_{1} \neq$ W_{1} or $\hat{W}_{2} \neq W_{2}$. That is, the event $\left(\hat{W}_{1}, \hat{W}_{2}\right) \neq\left(W_{1}, W_{2}\right)$ is the union of the two events $\hat{W}_{1} \neq W_{1}$ and $\hat{W}_{2} \neq W_{2}$. Thus

$$
\max \left\{P_{1}^{(n)}, P_{2}^{(n)}\right\} \leq P^{(n)} \leq P_{1}^{(n)}+P_{2}^{(n)} .
$$

Hence $P^{(n)} \rightarrow 0$ when $n \rightarrow \infty$ iff $P_{1}^{(n)} \rightarrow 0$ and $P_{2}^{(n)} \rightarrow 0$ when $n \rightarrow \infty$.
The probability of error $P^{(n)}$ does depend on the conditional joint distribution $p\left(y_{1}, y_{2} \mid x\right)$. However, $P_{1}^{(n)}$ and $P_{2}^{(n)}$ only depends on the conditional marginal distributions $p\left(y_{1} \mid x\right)$ and $p\left(y_{2} \mid x\right)$ respectively. Hence if for a particular broadcast channel, we have a sequence of codes with $P^{(n)} \rightarrow 0$, (so $P_{1}^{(n)} \rightarrow 0$ and $P_{2}^{(n)} \rightarrow 0$, then using the same codes for any broadcast channel with the same conditional marginals will also ensure $P^{(n)} \rightarrow 0$ for that channel. Thus the capacity region for a broadcast channel depends only on the conditional marginals.
7.2 Converse for the degraded broadcast channel.

$$
\begin{aligned}
n R_{2} & \leq \text { Fano } \\
& I\left(W_{2} ; Z^{n}\right) \\
& \stackrel{(a)}{=} \\
\stackrel{(b)}{=} & \sum_{i=1}^{n} I\left(W_{2} ; Z_{i} \mid Z^{i-1}\right) \\
& \stackrel{(c)}{\leq} \\
& \sum_{i}\left(H\left(Z_{i} \mid Z^{i-1}\right)-H\left(Z_{i} \mid W_{2}, Z^{i-1}\right)\right) \\
& \stackrel{(d)}{=} \\
& \sum_{i}\left(H\left(Z_{i} \mid W_{2}, Z^{i-1}, Y^{i-1}\right)\right) \\
& \stackrel{(e)}{=} \\
& \sum_{i=1}^{n} I\left(U_{i} \mid U_{2}, Z_{i}\right)
\end{aligned}
$$

(a) from the chain rule for mutual information,
(b) from the definition of conditional mutual information,
(c) from conditioning reduces entropy, (removing conditioning increases entropy as well,)
(d) from the fact that Z_{i} is conditional independent of Z^{i-1} given Y^{i-1},
(e) from the definitions of U_{i} and mutual information.

Continuation of converse.

$$
\begin{array}{lll}
n R_{1} & \leq \text { Fano } & I\left(W_{1} ; Y^{n}\right) \\
& \stackrel{(f)}{\leq} & I\left(W_{1} ; Y^{n}, W_{2}\right) \\
& \stackrel{(g)}{=} & I\left(W_{1} ; Y^{n} \mid W_{2}\right) \\
& \stackrel{(h)}{=} & \sum_{i=1}^{n} I\left(W_{1} ; Y_{i} \mid Y^{i-1}, W_{2}\right) \\
& \stackrel{(i)}{\leq} & \sum_{i=1}^{n} I\left(X_{i} ; Y_{i} \mid U_{i}\right) .
\end{array}
$$

(f) from $I\left(W_{1} ; Y^{n}, W_{2}\right)-I\left(W_{1} ; Y^{n}\right)=I\left(W_{1} ; W_{2} \mid Y^{n}\right) \geq 0$,
(g) from the chain rule for mutual information and the fact that W_{1} and W_{2} are independent,
(h) from the chain rule for mutual information,
(i) from $W_{1} \rightarrow X_{i} \rightarrow Y_{i}$ is a Markov chain given $U_{i}=\left(Y^{i-1}, W_{2}\right)$ and the data processing inequality.
7.3 Degraded broadcast channel. The cardinality of the auxiliary random variable U is binary since X and Y_{1} are binary and Y_{2} are ternary. By symmetry, we connect U to X by another BSC with parameter β.
Let $q=\operatorname{Pr}\{X=1\}$. The distribution of Y_{2} is

$$
\operatorname{Pr}\left\{Y_{2}\right\}=\{(1-\alpha)(1-q * p), \alpha,(1-\alpha)(q * p)\},
$$

where $q * p=q(1-p)+(1-q) p$. Hence

$$
\begin{align*}
H\left(Y_{2}\right)= & -(1-\alpha)(1-q * p)[\log (1-\alpha)+\log (1-q * p)]-\alpha \log \alpha \\
& -(1-\alpha)(q * p)[\log (1-\alpha)+\log (q * p)] \\
= & -\alpha \log \alpha-(1-\alpha) \log (1-\alpha) \\
& -(1-\alpha)[(1-q * p) \log (1-q * p)+(q * p) \log (q * p)] \\
= & H(\alpha)+(1-\alpha) H(q * p), \tag{1}
\end{align*}
$$

It is clear that $q=\frac{1}{2}$ gives the maximal $H\left(Y_{2}\right)$ since now $q * p=\frac{1}{2}$, and when $\alpha<1$ and $p \neq \frac{1}{2}$, maximizing $H\left(Y_{2}\right)$ requires $q=\frac{1}{2}$. And $q=\frac{1}{2}$ iff U is uniformly distributed on $\{0,1\}$. Also by (1), we get

$$
\begin{aligned}
H\left(Y_{2} \mid U\right) & =\operatorname{Pr}\{U=0\} H\left(Y_{2}\right)_{q=\beta}+\operatorname{Pr}\{U=1\} H\left(Y_{2}\right)_{q=1-\beta} \\
& =H(\alpha)+(1-\alpha) H(\beta * p),
\end{aligned}
$$

since $(1-\beta) * p=1-\beta * p$ thus $H((1-\beta) * p)=H(\beta * p)$. Thus

$$
I\left(U ; Y_{2}\right)=H\left(Y_{2}\right)-H\left(Y_{2} \mid U\right)=(1-\alpha)(H(q * p)-H(\beta * p)) .
$$

And the uniform distribution of U gives $I\left(U ; Y_{2}\right)=(1-\alpha)(1-H(\beta * p))$. Similarly,

$$
\begin{aligned}
I\left(X ; Y_{1} \mid U\right) & =H\left(Y_{1} \mid U\right)-H\left(Y_{1} \mid X, U\right) \\
& =H\left(Y_{1} \mid U\right)-H\left(Y_{1} \mid X\right) \text { since } Y_{1} \text { and } U \text { are independent given } X \\
& =H(\beta * p)-H(p) .
\end{aligned}
$$

Thus the capacity region for this channel is the convex hull of all rate pairs (R_{1}, R_{2}) satisfying

$$
R_{1} \leq H(\beta * p)-H(p), \quad R_{2} \leq(1-\alpha)(1-H(\beta * p)),
$$

for some β. Note that $\beta * p$ can be any value between p and $(1-p)$, so $H(\beta * p)$ can be any value between $H(p)$ and 1 . So the capacity region is exactly a triangular (when $\alpha<1$):

$$
R_{1}+\frac{1}{1-\alpha} R_{2} \leq 1-H(p)
$$

When $\alpha=1$, no information can be sent $\left(R_{2}=0\right)$ since Y_{2} is a constant. And the capacity region now is just $R_{1} \leq H(\beta * p)-H(p)$ and $R_{2}=0$.
7.4 Channels with unknown parameters. Without loss of generality, assume $p_{1}<p_{2}$. First, devise two codes X_{1}^{n} and X_{2}^{n} for p_{1} and p_{2} respectively, under the assumption that the receiver knows which one will be used. The alphabet size is $2^{n C\left(p_{1}\right)}$ for X_{1}^{n} and $2^{n C\left(p_{2}\right)}$ for X_{2}^{n}. Then insert a sequence of 1's before each codewords in X_{1}^{n} and X_{2}^{n}, as the prefix. The number of 1's inserted for each codeword is $K=[\log n]$. The receiver count the number of 1 's in the first K bits of the received codewords (denote the number as X). If $X<\frac{p_{1}+p_{2}}{2} K$, then the receiver uses $p=p_{1}$; otherwise uses $p=p_{2}$. From the Chebyshev's inequality, when p_{1} is used in the channel,

$$
\operatorname{Pr}\left\{X \geq \frac{p_{1}+p_{2}}{2} K\right\} \leq \operatorname{Pr}\left\{\left|X-p_{1} K\right| \geq \frac{p_{2}-p_{1}}{2} K\right\} \leq \frac{p_{1}\left(1-p_{1}\right)}{\left(p_{2}-p_{1}\right)^{2} K},
$$

and while p_{2} is used,

$$
\operatorname{Pr}\left\{X<\frac{p_{1}+p_{2}}{2} K\right\} \leq \operatorname{Pr}\left\{\left|X-p_{2} K\right| \geq \frac{p_{2}-p_{1}}{2} K\right\} \leq \frac{p_{2}\left(1-p_{2}\right)}{\left(p_{2}-p_{1}\right)^{2} K} .
$$

Thus the probability that the receiver takes a wrong p is tends to 0 when $n \rightarrow \infty$. And the rate is

$$
\frac{n C\left(p_{i}\right)}{n+K}=C\left(p_{i}\right) \cdot \frac{1}{1+\frac{\log n}{n}} \rightarrow C\left(p_{i}\right) \text { when } n \rightarrow \infty
$$

if $p=p_{i}$ is used $(i=1,2)$.
7.5 Two-way channel.
(a) For some product distribution $p\left(x_{1}\right) p\left(x_{2}\right) p\left(y_{1}, y_{2} \mid x_{1}, x_{2}\right)$, randomly design two independent codes for W_{1} and W_{2}. Since receiver $1\left(Y_{1}\right)$ could know X_{1} exactly, the channel from the standpoint of Y_{1} is a multiple access channel with inputs X_{1}, X_{2} and output (X_{1}, Y_{1}), in which X_{1} is transmitted through an error-free channel. Applying the analysis for achievability in a multiple access channel here, we get the following rate region is achievable:

$$
\begin{align*}
R_{1} & <I\left(X_{1} ; X_{1}, Y_{1} \mid X_{2}\right) \tag{2}\\
R_{2} & <I\left(X_{2} ; X_{1}, Y_{1} \mid X_{1}\right), \tag{3}\\
R_{1}+R_{2} & <I\left(X_{1}, X_{2} ; X_{1}, Y_{1}\right) . \tag{4}
\end{align*}
$$

(4) is superfluous since

$$
\begin{aligned}
I\left(X_{1}, X_{2} ; X_{1}, Y_{1}\right) & =I\left(X_{1} ; X_{1}, Y_{1}\right)+I\left(X_{2} ; X_{1}, Y_{1} \mid X_{1}\right) \\
& \geq I\left(X_{1} ; X_{1}, Y_{1} \mid X_{2}\right)+I\left(X_{2} ; X_{1}, Y_{1} \mid X_{1}\right) .
\end{aligned}
$$

Hence (4) is satisfied if (2) and (3) are satisfied. By $I\left(X_{1} ; Y_{1} \mid X_{1}, X_{2}\right)=0$ and X_{1} and X_{2} are independet,

$$
I\left(X_{1} ; X_{1}, Y_{1} \mid X_{2}\right)=I\left(X_{1} ; X_{1} \mid X_{2}\right)+I\left(X_{1} ; Y_{1} \mid X_{1}, X_{2}\right)=H\left(X_{1}\right) .
$$

So (2) becomes $R_{1}<H\left(X_{1}\right)$, which must be satisfied if $R_{1}<I\left(X_{1} ; Y_{2} \mid X_{2}\right)$, since $I\left(X_{1} ; Y_{2} \mid X_{2}\right) \leq H\left(X_{1} \mid X_{2}\right)=H\left(X_{1}\right)$. Similarly,

$$
I\left(X_{2} ; X_{1}, Y_{1} \mid X_{1}\right)=I\left(X_{2} ; Y_{1} \mid X_{1}\right)+I\left(X_{2} ; X_{1} \mid X_{1}, Y_{1}\right)=I\left(X_{2} ; Y_{1} \mid X_{1}\right)
$$

So (3) becomes $R_{2}<I\left(X_{2} ; Y_{1} \mid X_{1}\right)$.
The same analysis can be repeated from the standpoint of Y_{2}. Thus we conclude that the following rate region is achievable:

$$
\begin{aligned}
& R_{1}<I\left(X_{1} ; Y_{2} \mid X_{2}\right) \\
& R_{2}<I\left(X_{2} ; Y_{1} \mid X_{1}\right) .
\end{aligned}
$$

(b) Using Theorem 14.10.1 in Cover's book, we have

$$
\begin{aligned}
& R_{1} \leq I\left(X_{1} ; Y_{2} \mid X_{2}\right) \\
& R_{2} \leq I\left(X_{2} ; Y_{1} \mid X_{1}\right)
\end{aligned}
$$

if the rate pair $\left(R_{1}, R_{2}\right)$ is achievable.

