
EE/Ma 126b Information Theory - Homework Set #5

Ling Li, ling@cs.caltech.edu

February 20, 2001

5.1 A channel with two independent looks at Y .

(a) Since Y1 and Y2 are conditionally independent and conditionally identically distributed
given X, we have

H(Y1, Y2|X) = H(Y1|X) +H(Y2|X) = 2H(Y1|X),

and pY1|X(y|x) = pY2|X(y|x). Thus

pY1(y) =
∑
x

pY1|X(y|x)p(x) =
∑
x

pY2|X(y|x)p(x) = pY2(y).

Therefore H(Y1) = H(Y2). Then we have

I(X;Y1, Y2) = H(Y1, Y2)−H(Y1, Y2|X)
= (H(Y1) +H(Y2)− I(Y1;Y2))− 2H(Y1|X)
= 2 (H(Y1)−H(Y1|X))− I(Y1;Y2)

= 2I(X;Y1)− I(Y1;Y2) . (1)

(1) also holds for continuous channels. (All changes needed for the proof is replacing
symbols H, p,

∑
x with their continuous versions h, f , and

∫
S dx.)

(b) For the first channel, the capacity is C1 = maxp(x) I(X;Y1, Y2). For the second channel,
the capacity is C2 = maxp(x) I(X;Y1). Thus from (1),

C1 = max
p(x)

I(X;Y1, Y2)

= max
p(x)

(2I(X;Y1)− I(Y1;Y2))

≤ 2 max
p(x)

I(X;Y1)−min
p(x)

I(Y1;Y2)

≤ 2C2.

5.2 The two-look Gaussian channel. I am not sure whether the power constraint implies EX = 0.
So let X̂ = X − EX and Ŷi = Yi − EX. If we assume EX = 0, the X̂ and X, Ŷi and Yi are
just the same in this solution.

Since X and Zi are independent, X̂ and Zi are also independent. Then for 1 ≤ i, j ≤ 2,

E(ŶiŶj) = E
[
(X̂ + Zi)(X̂ + Zj)

]
= E(X̂2) + E(X̂)E(Zi) + E(X̂)E(Zj) + E(ZiZj)
= E(X̂2) + E(ZiZj).
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Thus the covariance of (Ŷ1, Ŷ2) is

K̂ = E

[
Ŷ 2

1 Ŷ1Ŷ2

Ŷ1Ŷ2 Ŷ 2
2

]
=
[
EX̂2 +N EX̂2 +Nρ

EX̂2 +Nρ EX̂2 +N

]
.

Since E(Ŷ1, Ŷ2) = 0 and translation doesn’t change the entropy, we have

h(Y1, Y2) = h(Ŷ1, Ŷ2) ≤ 1
2

log(2πe)2
[
N2(1− ρ2) + 2N(1− ρ)EX̂2

]
,

with equality iff (Ŷ1, Ŷ2) ∼ N2(0, K̂). Here
[
N2(1− ρ2) + 2N(1− ρ)EX̂2

]
is the determinant

of K̂.

From EX̂2 = EX2 − (EX)2 ≤ P − (EX)2 and h(Z1, Z2) = 1
2 log(2πe)2N2(1− ρ2), we get

I(X;Y1, Y2) = h(Y1, Y2)− h(Y1, Y2|X)
= h(Y1, Y2)− h(X + Z1, X + Z2|X)
= h(Y1, Y2)− h(Z1, Z2)

≤ 1
2

log

[
N2(1− ρ2) + 2N(1− ρ)EX̂2

]
N2(1− ρ2)

=
1
2

log
[
1 +

2EX2 − 2(EX)2

N(1 + ρ)

]
≤ 1

2
log
[
1 +

2P
N(1 + ρ)

]
,

with equality iff EX = 0 and EX̂2 = P and (Ŷ1, Ŷ2) ∼ N2(0, K̂), i.e., X ∼ N (0, P ). Thus the
channel capacity is

C = max
p(x):EX2≤P

I(X;Y1, Y2) =
1
2

log
[
1 +

2P
N(1 + ρ)

]
.

(a) ρ = 1, C = 1
2 log

(
1 + P

N

)
. Just as a normal Gaussian channel with only 1 look.

(b) ρ = 0, C = 1
2 log

(
1 + 2P

N

)
.

(c) ρ = −1, C =∞ . Since now Z2 = −Z1, we can get X = 1
2(Y1 + Y2). Thus all the bits of

X are transfered through the channel and therefore the capacity is infinity.

5.3 Parallel channels and waterfilling. The capacity of such parallel channels is

C =
1
2

log
[
1 +

(ν − σ2
1)+

σ2
1

]
+

1
2

log
[
1 +

(ν − σ2
2)+

σ2
2

]
,

where Pi = (ν−σ2
i )

+ is the power assigned to source Xi, and ν is chosen so that P1 +P2 = 2P .

When ν ≤ σ2
1, the two channels behave just like a single channel, since now P1 = (ν−σ2

1)+ = 0
— no power is used for source X1. When ν > σ2

1, since we assume σ2
1 > σ2

2, we have P2 > P1 > 0
and the channels behave like a pair of channels. Thus, when ν = σ2

1 and 2P = σ2
1 − σ2

2 , the
channels stop behaving like a single channel.
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5.4 Slepian-Wolf. Let q denote pY (1). Since X and Z are independent and Y = X ⊕ Z, we get

q = pX(0)pZ(1) + pX(1)pZ(0) = (1− p)r + p(1− r). (2)

So H(Y ) = H(q). From

H(Y |X) = H(X ⊕ Z|X) = H(Z|X) = H(Z) = H(r),
H(X,Y ) = H(X) +H(Y |X) = H(p) +H(r),

we get

H(X|Y ) = H(X,Y )−H(Y ) = H(p) +H(r)−H(q).

Thus the region of rates allowing recovery of X,Y is defined by

R1 > H(X|Y ) = H(p) +H(r)−H(q),
R2 > H(Y |X) = H(r),

R1 +R2 > H(X,Y ) = H(p) +H(r).

Note that from (2), q is between p and (1 − p) since it is a weighted sum of p and (1 − p)
and weights are non-negative. Therefore H(q) ≥ H(p) with equality iff r = 0, 1. We also have
H(q) ≥ H(r). So H(X|Y ) ≤ H(p) and H(X|Y ) ≤ H(r).

5.5 A mutual information game. We have known that for a Gaussian channel with noise Z∗,

I(X;X + Z∗) ≤ I(X∗;X∗ + Z∗) =
1
2

log
(

1 +
P

N

)
.

The entropy power inequality says (Theorem 16.6.3 in Cover’s book): if X and Y are indepen-
dent random n-vectors with densities, then

2
2
n
h(X+Y) ≥ 2

2
n
h(X) + 2

2
n
h(Y).

Let n = 1, X = X∗ and Y = Z. We get 22h(X∗+Z) ≥ 22h(X∗) + 22h(Z), or

22[h(X∗+Z)−h(Z)] ≥ 22[h(X∗)−h(Z)] + 1.

Since 2x is a monotonic increasing function of x, and h(Z) ≤ h(Z∗), we get

22[h(X∗+Z)−h(Z)] ≥ 22[h(X∗)−h(Z∗)] + 1 =
P

N
+ 1.

Taking the logarithm,

h(X∗ + Z)− h(Z) ≥ 1
2

log
(

1 +
P

N

)
.

Since X∗ and Z are independent,

I(X∗;X∗ + Z) = h(X∗ + Z)− h(X∗ + Z|X∗) = h(X∗ + Z)− h(Z),

we finally have

I(X;X + Z∗) ≤ I(X∗;X∗ + Z∗) ≤ I(X∗;X∗ + Z) .
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Thus

min
Z

max
X

I(X;X + Z) ≤ max
Z

I(X;X + Z∗)

= I(X∗;X∗ + Z∗)
= min

Z
I(X∗;X∗ + Z)

≤ max
X

min
Z
I(X;X + Z). (3)

Generally, we have

min
x

max
y

f(x, y) ≥ max
y

min
x
f(x, y),

since for any x′, we have maxy f(x′, y) ≥ maxy minx f(x, y). Thus

min
Z

max
X

I(X;X + Z) ≥ max
X

min
Z
I(X;X + Z). (4)

From (3) and (4), we have

min
Z

max
X

I(X;X + Z) = max
X

min
Z
I(X;X + Z) =

1
2

log
(

1 +
P

N

)
. (5)

For a game, any player (say, X) wants to maximize his∗ ‘award’ (I(X;X+Z)) in any situation.
However, since a game is played simultaneously by several players, (in this game, 2 players,)
he must take into consideration other players’ actions. Thus, he would suppose other players
are also very smart and thus what he eventually could get is the minimum maximum award
(minZ maxX I(X;X + Z)), where maximum is over all his actions and minimum is over all
possible situations. If ‘award’ is replaced by ‘punishment’, then the player expects to get a
maximum minimum ‘punishment’. Usually, in a 2-player game, the award of one player is the
punishment of the other player. Thus we will have balance like (5).

For this game, either player has an optimal strategy: using normal distribution. By using
such strategies, they achieve the balance between them. If either of them deviates from the
optimal strategy, the ‘award’ decreases, which means the mutual information decreases, from
that player’s standpoint.

∗For convenience, I will use he instead of she/he.

4


