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4.1 One bit quantization of a single Gaussian random variable.∗ Let the boundary be x. We
use one symbol to represent all t ≤ x and another symbol for t > x. Since squared error
measure is used, the two conditional expectations should be the reproduction points. That is,
x0 =

∫ x
−∞

f(t)
1/2+A(x) tdt for t ≤ x and x1 =

∫∞
x

f(t)
1/2−A(x) tdt for t > x, where f(t) = 1√

2πσ2
et

2/2σ2

is the probability density function and A(x) =
∫ x

0 f(t)dt. Thus the distortion D is the weighted
sum of two conditional variances:

D(x) = (1/2 +A(x))

[∫ x

−∞

f(t)
1/2 +A(x)

t2dt−
(∫ x

−∞

f(t)
1/2 +A(x)

tdt

)2
]

+ (1/2−A(x))

[∫ ∞
x

f(t)
1/2−A(x)

t2dt−
(∫ ∞

x

f(t)
1/2−A(x)

tdt

)2
]

=
∫ ∞
−∞

f(x)t2dt− σ4f2(x)
1/2 +A(x)

− σ4f2(x)
1/2−A(x)

= σ2 − 4σ4f2(x)
1− 4A2(x)

= σ2 − 2σ2e−x
2/σ2

π(1− 4A2(x))
. (1)

Now we want to prove e−x
2/σ2 ≤ 1− 4A2(x). Without loss of generality, assume x ≥ 0.

4A2(x) =
(∫ x

−x
f(t)dt

)2

=
∫ x

−x

∫ x

−x
f(u)f(v)dudv

≤ 1
2πσ2

∫ √2x

−
√

2x

(∫ √2x2−u2

−
√

2x2−u2

e−
u2+v2

2σ2 dv

)
du (2)

=
1

2πσ2

∫ 2π

0
dθ

∫ √2x

0
e−

r2

2σ2 rdr = 1− e−x2/σ2
.

The reason for (2) is that f > 0 and the square of [−x, x] × [−x, x] is inside the circle with
center (0, 0) and radius

√
2x. So e−x

2/σ2 ≤ 1− 4A2(x) with equality iff x = 0. Then from (1),

D(x) ≥ π−2
π σ2 with equality iff x = 0. So, the minimum distortion is

π − 2
π

σ2 , with x = 0

and x0,1 = ±2
∫ 0
−∞ f(t)tdt = ±

√
2
π
σ .

∗Prof. Malik Magdon-Ismail gave me the idea of first setting the boundary, instead of setting the two reproduction
points. The last way wasted me more than 12 hours.
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4.2 Rate distortion for uniform source with hamming distortion. The distortion with the Hamming
measure is D̄ = Ed(X, X̂) = Pr{d(X, X̂) = 1}. We have

I(X; X̂) = H(X)−H(X|X̂) (definition of I(X; X̂))

= H(X)−H(X − X̂|X̂) (previous homework)

= H(X)−H(X − X̂, d(X, X̂)|X̂) (d(X, X̂) is a function of X − X̂)

= H(X)−H(d(X, X̂)|X̂)−H(X − X̂|d(X, X̂), X̂) (chain rule of entropy)

≥ H(X)−H(d(X, X̂))−H(X − X̂|d(X, X̂), X̂) (conditioning reduces entropy)

= H(X)−H(D̄)−H(X − X̂|X̂, d(X, X̂) = 1)D̄ (D̄ = Pr{d(X, X̂) = 1} and

d(X, X̂) = 0⇒ X − X̂ = 0)

≥ logm−H(D̄)− D̄ log(m− 1). (p(X) is uniform and for given X̂∣∣∣{X − X̂ : X 6= X̂}
∣∣∣ = m− 1)

Notice that
d[logm−H(D̄)− D̄ log(m− 1)]

dD̄
= log

D̄

1− D̄
− log(m− 1),

which is less than 0 when 0 < D̄ < 1− 1
m . Thus when D ≤ 1− 1

m , we have

R(D) = min
D̄≤D

I(X; X̂) ≥ logm−H(D)−D log(m− 1).

We can design distributions p(X|X̂) and p(X̂) to achieve the minimum I(X; X̂). Let p(X̂) be
uniform distribution. For 0 ≤ D ≤ 1− 1

m , set

p(X|X̂) =
{

1−D, X = X̂;
D/(m− 1), X 6= X̂.

Thus

p(X = x) =
∑
x̂

p(X = x|X̂ = x̂)p(X̂ = x̂)

=
1
m

p(X = x|X̂ = x) +
∑
x̂ 6=x

p(X = x|X̂ = x̂)


=

1
m

(
1−D + (m− 1)× D

m− 1

)
=

1
m
,

and the distortion is

Pr{X 6= X̂} = 1− Pr{X = X̂} = 1−
∑
x̂

p(X = x̂|X̂ = x̂)p(X̂ = x̂) = D.

So such distribution meets the requirements on the distribution of X and the distortion. And,
now

I(X; X̂) = H(X)−H(X|X̂)

= H(X)−H(1−D, D

m− 1
, . . . ,

D

m− 1
)

= H(X) + (1−D) log(1−D) + (m− 1)× D

m− 1
log

D

m− 1
= logm−H(D)−D log(m− 1).
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Thus we know R(D) = logm−H(D)−D log(m− 1) for 0 ≤ D ≤ 1− 1
m . When D > 1− 1

m ,

we can send nothing and simply choose X̂ at random. Thus the distortion is Pr{X 6= X̂} =
m−1
m < D. So obviously R(D) = 0 when D > 1− 1

m .

4.3 Erasure distortion. Let {0, E , 1} denote the set X̂ , where ‘E ’ stands for erasure. Since d(0, 1) =
d(1, 0) =∞, we must have p(0, 1) = p(1, 0) = 0 for a finite distortion. Thus

D = p(0, E) + p(1, E) = pX̂(E),

and

I(X; X̂) = H(X)−H(X|X̂)
= 1−H(X|X̂ = E)pX̂(E)
≥ 1−D. (3)

When p(X|X̂ = E) = 1
2 and D ≤ 1, we can set pX̂(0) = pX̂(1) = 1−D

2 and pX̂(E) = D. Then
pX(x) = pX̂(x) + 1

2pX̂(E) = 1
2 , meeting that X ∼ Bernoulli(1

2). And now the equality of (3)
holds. Thus R(D) = 1−D when 0 ≤ D ≤ 1. When D > 1, obviously R(D) = 0 .

A simple strategy to achieve R(D) is to erase X at random with probability 1− R(D). Since
X is uniformly distributed, we have with such strategy, p(0, E) = p(1, E) = 1

2(1 − R(D)) and
p(0, 1) = p(1, 0) = 0. Thus from the above discussion, the rate is 1− (1−R(D)) = R(D).

4.4 Bounds on the rate distortion function for squared error distortion. With D as the upper bound
of the distortion, we have

σ2(X − X̂) = E(X − X̂)2 − [E(X − X̂)]2 = E(X − X̂)2 ≤ D.

Thus h(X − X̂) ≤ 1
2 log 2πeσ2(X − X̂) ≤ 1

2 log(2πeD). So

I(X; X̂) = h(X)− h(X|X̂) = h(X)− h(X − X̂|X̂)
≥ h(X)− h(X − X̂)

≥ h(X)− 1
2

log(2πeD),

and

R(D) = min
E(X−X̂)2≤D

I(X; X̂) ≥ h(X)− 1
2

log(2πeD) .

For Z ∼ N (0, Dσ2

σ2−D ) independent with X and X̂ = σ2−D
σ2 (X + Z), we have the distortion is

E(X − X̂)2 = E

(
D

σ2
X − σ2 −D

σ2
Z

)2

= E

(
D

σ2
X

)2

+ E

(
σ2 −D
σ2

Z

)2

=
(
D

σ2

)2

σ2 +
(
σ2 −D
σ2

)2
Dσ2

σ2 −D
= D.
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And it is surprising to find out that for a constant a,†

h(X|aY ) = h(X|Y ), I(X; aY ) = I(X;Y ).

You can find the proof in the footnote. Thus the mutual information is

I(X; X̂) = I(X;X + Z)
= h(X + Z)− h(X + Z|X)
= h(X + Z)− h(Z)

≤ 1
2

log 2πe(σ2 +
Dσ2

σ2 −D
)− 1

2
log 2πe

Dσ2

σ2 −D
(4)

=
1
2

log
σ2

D
.

The reason for (4) is that

σ2(X + Z) = σ2(X) + σ2(Z) = σ2 +
Dσ2

σ2 −D
.

For such X̂ and I(X; X̂), the distortion is bounded by D. So we get

R(D) ≤ 1
2

log
σ2

D
.

Since for Gaussian random variable with variance σ2, R(D) = 1
2 log σ2

D achieves the maximum
of R(D), it is harder to describe the Gaussian random variable than other random variables
with the same variance.

4.5 Properties of optimal rate distortion code. The conditions of equalities are listed at the right

†Let Z = aY . Then fZ(z) = 1
|a|fY ( z

a
), and fX,Z(x, z) = 1

|a|fX,Y (x, z
a

). Thus with variable replacing,

h(X|aY ) = −
∫
S

fX,Z(x, z) log
fX,Z(x, z)

fZ(z)
dxdz

= −
∫
S

1

|a|fX,Y (x,
z

a
) log

fX,Y (x, z
a

)

fY ( z
a

)
dxdz

= −
∫
S

fX,Y (x, y) log
fX,Y (x, y)

fY (y)
dxdy

= h(X|Y ).

This can also be proved by

I(X; aY ) = h(aY )− h(aY |X) = h(Y ) + log |a| − h(Y |X)− log |a| = I(X;Y ).
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side:

nR ≥ H(X̂n) (X̂n is uniformly distributed)

≥ H(X̂n)−H(X̂n|Xn) (X̂n is a deterministic function of Xn)

= H(Xn)−H(Xn|X̂n)

=
n∑
i=1

H(Xi)−
n∑
i=1

H(Xi|X̂n, X i−1
1 )

≥
n∑
i=1

H(Xi)−
n∑
i=1

H(Xi|X̂i) (independent encoding among Xi)

=
n∑
i=1

I(Xi; X̂i)

≥
n∑
i=1

R(Ed(Xi, X̂i)) (optimal for each single Xi)

≥ nR

(
1
n

n∑
i=1

Ed(Xi, X̂i)

)
(same distortion on each Xi)

= nR(D)
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