# EE/Ma 126b Information Theory - Homework Set \#3 

Ling Li, ling@cs.caltech.edu
January 24, 2001
3.1 Maximum entropy. The support set is $S=\mathcal{R}^{+}$. The maximum entropy density with constraints

$$
\int_{S} f(x) d x=1, \quad \int_{S} x f(x) d x=\alpha_{1}, \quad \int_{S}(\ln x) f(x) d x=\alpha_{2}
$$

is of the form

$$
f(x)=e^{\lambda_{0}+\lambda_{1} x+\lambda_{2} \ln x}=e^{\lambda_{0}} x^{\lambda_{2}} e^{\lambda_{1} x}, \quad x \in S
$$

where the parameters $\lambda_{0}, \lambda_{1}$, and $\lambda_{2}$ are chosen so that $f$ satisfies the constraints. In order to satisfy $\int_{S} f(x) d x=1, \lambda_{1}<0$ and $\lambda_{2}>-1$. ${ }^{*}$ By changing a variable,

$$
1=\int_{S} f(x) d x=e^{\lambda_{0}} \int_{0}^{\infty} x^{\lambda_{2}} e^{\lambda_{1} x} d x=e^{\lambda_{0}}\left(-\lambda_{1}\right)^{-\lambda_{2}-1} \int_{0}^{\infty} x^{\lambda_{2}} e^{-x} d x
$$

so

$$
e^{\lambda_{0}}=\frac{\left(-\lambda_{1}\right)^{\lambda_{2}+1}}{\Gamma\left(\lambda_{2}+1\right)}, \quad \text { or } \quad \lambda_{0}=\left(\lambda_{2}+1\right) \ln \left(-\lambda_{1}\right)-\ln \Gamma\left(\lambda_{2}+1\right),
$$

where $\Gamma(t)=\int_{0}^{\infty} x^{t-1} e^{-x} d x$ is the Euler gamma function. Thus we know

$$
f(x)=\frac{x^{k-1} e^{-x / b}}{\Gamma(k) b^{k}}, \quad x>0
$$

is a gamma distribution with shape parameter $k=\lambda_{2}+1$ and scale parameter $b=-\lambda_{1}^{-1}$. From the second constraint, $E X=k b=-k \lambda_{1}^{-1}=\alpha_{1}$, we get $k=-\alpha_{1} \lambda_{1}$. The last parameter $\lambda_{1}$ can be decided by the last constraint.
3.2 Maximum entropy with marginals. For any joint distribution $p(x, y)$ that has the fixed marginals $p(x)$ and $p(y)$, we claim that $p^{*}(x, y)=p(x) p(y)$ maximizing the entropy $H(X, Y)=H(p(x, y))$. And $p^{*}(x, y)$ is the only maximizing distribution.

Proof: For any distribution $p(x, y)$ that satisfies $\sum_{y} p(x, y)=p(x)$ and $\sum_{x} p(x, y)=p(y)$, we have $H(X, Y)=H(X)+H(Y \mid X) \leq H(X)+H(Y)$ with equality iff $X$ and $Y$ are independent. Thus $H(X, Y)$ gets its maximum $H(X)+H(Y)$ iff $p(x, y)=p(x) p(y)$.

[^0]Thus, the maximum entropy distribution $p(x, y)$ for the problem is

| $x \backslash y$ | 1 | 2 | 3 |
| :---: | :---: | :---: | :---: |
| $c$ | $p(x)$ |  |  |
| 1 | $1 / 3$ | $1 / 12$ | $1 / 12$ |
| 2 | $1 / 6$ | $1 / 24$ | $1 / 2$ |
| 3 | $1 / 6$ | $1 / 24$ | $1 / 4$ |
| $p(y)$ | $2 / 3$ | $1 / 6$ | $1 / 24$ |
|  | $1 / 6$ |  |  |

3.3 Rate distortion function with infinite distortion. Considering distribution $p(\hat{x} \mid x)$ such that

$$
E d(X, \hat{X})=\sum_{x, \hat{x}} p(x) p(\hat{x} \mid x) d(x, \hat{x})=\frac{1}{2}[p(\hat{x}=0 \mid x=1)+p(\hat{x}=1 \mid x=0) \cdot \infty] \leq D
$$

we have $p(\hat{x}=1 \mid x=0)=0$ and thus $p(\hat{x}=0 \mid x=0)=1$. Let $p$ denote $p(\hat{x}=0 \mid x=1)$ for convenience. Then we have

$$
p(\hat{x}=0)=1 \cdot p(x=0)+p \cdot p(x=1)=\frac{1+p}{2} .
$$

So

$$
p(x=0 \mid \hat{x}=0)=\frac{p(\hat{x}=0 \mid x=0) p(x=0)}{p(\hat{x}=0)}=\frac{1}{1+p}, \quad p(x=0 \mid \hat{x}=1)=0
$$

and

$$
\begin{align*}
I(X ; \hat{X}) & =H(X)-H(X \mid \hat{X}) \\
& =1-p(\hat{x}=0) H\left(\frac{1}{1+p}\right)-p(\hat{x}=1) H(0) \\
& =1-\frac{1+p}{2} H\left(\frac{1}{1+p}\right) . \tag{1}
\end{align*}
$$

Differentiate (1), we have

$$
\frac{\partial I(X ; \hat{X})}{\partial p}=\frac{1}{2(1+p)} \log p-\frac{1}{2} H\left(\frac{1}{1+p}\right)=\frac{1}{2} \log \frac{p}{1+p}<0
$$

since $\frac{p}{1+p}<1$. So the minimum of $I(X ; \hat{X})$ is achieved at the maximum of $p$. From

$$
E d(X, \hat{X})=\frac{1}{2} p \leq D
$$

and $0 \leq p \leq 1$, the maximum of $p$ is $\min \{2 D, 1\}$. So

$$
\begin{aligned}
R(D) & =\min _{E d(X, \hat{X}) \leq D} I(X ; \hat{X})=\left.\left[1-\frac{1+p}{2} H\left(\frac{1}{1+p}\right)\right]\right|_{p=\min \{2 D, 1\}} \\
& = \begin{cases}1-\frac{1+2 D}{2} H\left(\frac{1}{1+2 D}\right), & 0 \leq D<1 / 2 ; \\
0, & D \geq 1 / 2\end{cases}
\end{aligned}
$$

3.4 Rate distortion for binary source with asymmetric distortion. Let $p_{01}$ denote the cross probability $p(\hat{x}=1 \mid x=0)$ and $p_{10}$ denote $p(\hat{x}=0 \mid x=1)$. The distortion is

$$
E d(X, \hat{X})=\sum_{x, \hat{x}} p(x) p(\hat{x} \mid x) d(x, \hat{x})=\frac{1}{2}\left(a p_{01}+b p_{10}\right)
$$

Since

$$
p(\hat{x}=0)=p(\hat{x}=0 \mid x=0) p(x=0)+p(\hat{x}=0 \mid x=1) p(x=1)=\frac{1}{2}\left(1-p_{01}+p_{10}\right),
$$

the mutual information is

$$
\begin{align*}
I(X ; \hat{X}) & =H(\hat{X})-H(\hat{X} \mid X) \\
& =H\left(\frac{1}{2}\left(1-p_{01}+p_{10}\right)\right)-\frac{1}{2} H\left(p_{01}\right)-\frac{1}{2} H\left(p_{10}\right) . \tag{2}
\end{align*}
$$

Thus

$$
\begin{align*}
& \frac{\partial I(X ; \hat{X})}{\partial p_{01}}=\frac{1}{2} \log \frac{1-p_{01}+p_{10}}{1+p_{01}-p_{10}}-\frac{1}{2} \log \frac{1-p_{01}}{p_{01}},  \tag{3}\\
& \frac{\partial I(X ; \hat{X})}{\partial p_{10}}=\frac{1}{2} \log \frac{1+p_{01}-p_{10}}{1-p_{01}+p_{10}}-\frac{1}{2} \log \frac{1-p_{10}}{p_{10}} . \tag{4}
\end{align*}
$$

Since $\log (\cdot)$ is a monotonic increasing function, and

$$
\begin{aligned}
& \frac{1-p_{01}+p_{10}}{1+p_{01}-p_{10}}-\frac{1-p_{01}}{p_{01}}=\frac{p_{01}+p_{10}-1}{p_{01}\left(1+p_{01}-p_{10}\right)}, \\
& \frac{1+p_{01}-p_{10}}{1-p_{01}+p_{10}}-\frac{1-p_{10}}{p_{10}}=\frac{p_{01}+p_{10}-1}{p_{10}\left(1-p_{01}+p_{10}\right)},
\end{aligned}
$$

and $\left|p_{01}-p_{10}\right| \leq 1$, we have $\operatorname{sgn}\left(\frac{\partial I(X ; \hat{X})}{\partial p_{01}}\right)=\operatorname{sgn}\left(\frac{\partial I(X ; \hat{X})}{\partial p_{10}}\right)=\operatorname{sgn}\left(p_{01}+p_{10}-1\right)$. Then we can decrease $I(X ; \hat{X})$ by decreasing $p_{01}$ and/or $p_{10}$ when $p_{01}+p_{10}>1$, or by increasing $p_{01}$ and/or $p_{10}$ when $p_{01}+p_{10}<1$. The minimum of $I(X ; \hat{X})$, which is 0 , is achieved when $p_{01}+p_{10}=1 .^{\dagger}$ However, $E d(X, \hat{X}) \leq D$ restricts that $a p_{01}+b p_{10} \leq 2 D$. So
(a) When $a \leq 2 D$ or $b \leq 2 D, p_{01}+p_{10}=1$ can be achieved, either when $p_{01}=1, p_{10}=0$ or when $p_{01}=0, p_{10}=1$. So now $R(D)=0$.
(b) When $a>2 D$ and $b>2 D, p_{01}+p_{10}<1$. However, from the above discussion, the minimum of $I(X ; \hat{X})$ is achieved at the boundary of $a p_{01}+b p_{10}=2 D$, since we can always increase $p_{01}$ and/or $p_{10}$ when $a p_{01}+b p_{10}<2 D$, to decrease the mutual information. Thus we can use the method of Lagrange multipliers. Let

$$
L=I(X ; \hat{X})-\lambda\left(a p_{01}+b p_{10}-2 D\right)
$$

and solve $\frac{\partial L}{\partial p_{01}}=\frac{\partial L}{\partial p_{10}}=\frac{\partial L}{\partial \lambda}=0$, i.e.,

$$
\frac{\partial I(X ; \hat{X})}{\partial p_{01}}-\lambda a=\frac{\partial I(X ; \hat{X})}{\partial p_{10}}-\lambda b=a p_{01}+b p_{10}-2 D=0 .
$$

After eliminating the parameter $\lambda$ and using (3) and (4), we get

$$
\left\{\begin{array}{l}
(a+b) \log \frac{1-p_{01}+p_{10}}{1+p_{01}-p_{10}}+a \log \frac{1-p_{10}}{p_{10}}-b \log \frac{1-p_{01}}{p_{01}}=0 \\
a p_{01}+b p_{10}-2 D=0
\end{array}\right.
$$

Solving these equations and then using (2), we can get the minimum of $I(X ; \hat{X})$, i.e., $R(D)$. (If no solutions are found, the minimum of $I(X ; \hat{X})$ is at one of the two ends: $\left(p_{01}=\frac{2 D}{a}, p_{10}=0\right)$ and $\left.\left(p_{01}=0, p_{10}=\frac{2 D}{b}\right).\right)$

[^1]3.5 Shannon lower bound for the rate distortion function. Let $\mathcal{P}(D)=\left\{\mathbf{p}: \sum_{i=1}^{m} p_{i} d_{i} \leq D\right\}$. Thus
\[

$$
\begin{equation*}
\phi(D)=\max _{\mathbf{p} \in \mathcal{P}(D)} H(\mathbf{p}) . \tag{5}
\end{equation*}
$$

\]

(a) For any $D^{\prime}, D^{\prime \prime} \geq 0$, and $\lambda \in[0,1]$, let

$$
\mathbf{p}^{\prime}=\arg \max _{\mathbf{p} \in \mathcal{P}\left(D^{\prime}\right)} H(\mathbf{p}), \quad \mathbf{p}^{\prime \prime}=\arg \max _{\mathbf{p} \in \mathcal{P}\left(D^{\prime \prime}\right)} H(\mathbf{p}),
$$

and $\mathbf{p}^{(\lambda)}=\lambda \mathbf{p}^{\prime}+(1-\lambda) \mathbf{p}^{\prime \prime}$. Thus the concavity of $H(\mathbf{p})$ gives

$$
\begin{equation*}
H\left(\mathbf{p}^{(\lambda)}\right) \geq \lambda H\left(\mathbf{p}^{\prime}\right)+(1-\lambda) H\left(\mathbf{p}^{\prime \prime}\right)=\lambda \phi\left(D^{\prime}\right)+(1-\lambda) \phi\left(D^{\prime \prime}\right) . \tag{6}
\end{equation*}
$$

Since $\mathbf{p}^{\prime} \in \mathcal{P}\left(D^{\prime}\right)$ and $\mathbf{p}^{\prime \prime} \in \mathcal{P}\left(D^{\prime \prime}\right)$, we have $\sum_{i=1}^{m} p_{i}^{\prime} d_{i} \leq D^{\prime}$ and $\sum_{i=1}^{m} p_{i}^{\prime \prime} d_{i} \leq D^{\prime \prime}$, and

$$
\sum_{i=1}^{m} p_{i}^{(\lambda)} d_{i}=\lambda \sum_{i=1}^{m} p_{i}^{\prime} d_{i}+(1-\lambda) \sum_{i=1}^{m} p_{i}^{\prime \prime} d_{i} \leq \lambda D^{\prime}+(1-\lambda) D^{\prime \prime}
$$

i.e., $\mathbf{p}^{(\lambda)} \in \mathcal{P}\left(\lambda D^{\prime}+(1-\lambda) D^{\prime \prime}\right)$. Together with (5) and (6), this gives

$$
\phi\left(\lambda D^{\prime}+(1-\lambda) D^{\prime \prime}\right)=\max _{\mathbf{p} \in \mathcal{P}\left(\lambda D^{\prime}+(1-\lambda) D^{\prime \prime}\right)} H(\mathbf{p}) \geq H\left(\mathbf{p}^{(\lambda)}\right) \geq \lambda \phi\left(D^{\prime}\right)+(1-\lambda) \phi\left(D^{\prime \prime}\right) .
$$

So $\phi(D)$ is a concave function of $D$. Besides, since $\mathcal{P}(D) \subseteq \mathcal{P}\left(D^{\prime}\right)$ when $D \leq D^{\prime}$, we know $\phi(D)$ is also a non-decreasing function of $D$.
(b) If $\operatorname{Ed}(X, \hat{X}) \leq D$, i.e.,

$$
\begin{equation*}
\sum_{\hat{x}} p(\hat{x}) D_{\hat{x}}=\sum_{\hat{x}} p(\hat{x}) \sum_{x} p(x \mid \hat{x}) d(x, \hat{x})=\sum_{x, \hat{x}} p(x, \hat{x}) d(x, \hat{x}) \leq D \tag{7}
\end{equation*}
$$

we have

$$
\begin{align*}
I(X ; \hat{X}) & =H(X)-H(X \mid \hat{X})  \tag{8}\\
& =H(X)-\sum_{\hat{x}} p(\hat{x}) H(X \mid \hat{X}=\hat{x})  \tag{9}\\
& \geq H(X)-\sum_{\hat{x}} p(\hat{x}) \phi\left(D_{\hat{x}}\right)  \tag{10}\\
& \geq H(X)-\phi\left(\sum_{\hat{x}} p(\hat{x}) D_{\hat{x}}\right)  \tag{11}\\
& \geq H(X)-\phi(D) . \tag{12}
\end{align*}
$$

Here

- (8) is (2.39) in Cover's book;
- (9) is the definition of the conditional entropy;
- Since for fixed $\hat{x},\{d(x, \hat{x}) \mid x \in \mathcal{X}\}$ is a permutation of $\left\{d_{1}, d_{2}, \ldots, d_{m}\right\}$, thus from $D_{\hat{x}}=\sum_{x} p(x \mid \hat{x}) d(x, \hat{x})$ we know that one permutation of $\{p(x \mid \hat{x}) \mid x \in \mathcal{X}\}$, say $\mathbf{p}$, satisfies $\sum_{i} p_{i} d_{i}=D_{\hat{x}}$, i.e., $\mathbf{p} \in \mathcal{P}\left(D_{\hat{x}}\right)$. Since permutation doesn't change the entropy, we have

$$
\begin{equation*}
H(X \mid \hat{X}=\hat{x})=H(\mathbf{p}) \leq \phi\left(D_{\hat{x}}\right) . \tag{13}
\end{equation*}
$$

This explains (10);

- (11) is because of the concavity of $\phi(D)$ and $p(\hat{x}) \geq 0$ and $\sum_{\hat{x}} p(\hat{x})=1$;
- From (7) and $\phi(D)$ is non-decreasing, we finally get (12).
(c) From (b) we know if $E d(x, \hat{x}) \leq D$ then $I(X ; \hat{X}) \geq H(X)-\phi(D)$. So

$$
\begin{equation*}
R(D)=\min _{E d(x, \hat{x}) \leq D} I(X ; \hat{X}) \geq H(X)-\phi(D) . \tag{14}
\end{equation*}
$$

Let

$$
\mathbf{p}^{*}=\arg \max _{\mathbf{p} \in \mathcal{P}(D)} H(\mathbf{p}) .
$$

Since for any fixed $\hat{x},\{d(x, \hat{x}) \mid x \in \mathcal{X}\}$ is a permutation of $\left\{d_{1}, d_{2}, \ldots, d_{m}\right\}$, we can make $p(x \mid \hat{x})$ a permutation of $\mathbf{p}^{*}$ with the same order as $d(x, \hat{x})$. Thus we have

- $D_{\hat{x}}=\sum_{x} p(x \mid \hat{x}) d(x, \hat{x})=\sum_{i} p_{i}^{*} d_{i}$ is the same for all $\hat{x} \in \hat{\mathcal{X}}$;
- $D_{\hat{x}}=\sum_{i} p_{i}^{*} d_{i} \leq D$, since $\mathbf{p}^{*} \in \mathcal{P}(D)$;
- $H(X \mid \hat{X}=\hat{x})=H\left(\mathbf{p}^{*}\right)=\phi(D)=\phi\left(D_{\hat{x}}\right)$, since we also have $\mathbf{p}^{*} \in \mathcal{P}\left(D_{\hat{x}}\right)$ and $D_{\hat{x}} \leq D$.

For such $p(x \mid \hat{x})$, we have the equalities of (13), (10), (11), and (12). Thus the lower bound of $R(D)$ can be achieved, i.e., $R(D)=H(X)-\phi(D)$.
However, till now we have not prove that such $p(x \mid \hat{x})$ meets the source distribution. If any distribution of $\hat{X}$, together with such $p(x \mid \hat{x})$, can not satisfy the given source distribution, then we can not claim $R(D)=H(X)-\phi(D)$. Luckily, if in addition, we assume that the source has a uniform distribution and the rows of the distortion matrix are permutations of each other, such $p(x \mid \hat{x})$ can meet the source distribution.
Let $\hat{X}$ also be uniformly distributed. Since the rows of the distortion matrix are permutations of each other, our way to produce $p(x \mid \hat{x})$ assures that $\{p(x \mid \hat{x}) \mid \hat{x} \in \hat{\mathcal{X}}\}$ for fixed $x$ is a permutation of that of a different $x$. Thus

$$
p(x)=\sum_{\hat{x}} p(x \mid \hat{x}) p(\hat{x})=\frac{1}{|\hat{\mathcal{X}}|} \sum_{\hat{x}} p(x \mid \hat{x})
$$

is invariant for all $x \in \mathcal{X}$, i.e., $X$ is uniformly distributed. So now the source distribution is met and we have $R(D)=H(X)-\phi(D)$.


[^0]:    ${ }^{*} \lambda_{1}>0$ makes $f(x) \rightarrow \infty$ when $x \rightarrow \infty ; \lambda_{1}=0$ makes $f(x)=e^{\lambda_{0}} e^{\lambda_{1} x}$ and its integral doesn't converge on $S$; when $\lambda_{2} \leq-1$, the integral of $f(x)$ on $(0,1)$ does not converge.

[^1]:    ${ }^{\dagger}$ When $p_{01}+p_{10}=1, H\left(\frac{1}{2}\left(1-p_{01}+p_{10}\right)\right)=H\left(p_{10}\right)$ and $H\left(p_{01}\right)=H\left(1-p_{10}\right)=H\left(p_{10}\right)$, so $I(X ; \hat{X})=0$.

