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3.1 Maximum entropy. The support set is S = R+. The maximum entropy density with constraints∫
S
f(x)dx = 1,

∫
S
xf(x)dx = α1,

∫
S

(lnx)f(x)dx = α2,

is of the form
f(x) = eλ0+λ1x+λ2 lnx = eλ0xλ2eλ1x, x ∈ S,

where the parameters λ0, λ1, and λ2 are chosen so that f satisfies the constraints. In order to
satisfy

∫
S f(x)dx = 1, λ1 < 0 and λ2 > −1 .∗ By changing a variable,

1 =
∫
S
f(x)dx = eλ0

∫ ∞
0

xλ2eλ1xdx = eλ0(−λ1)−λ2−1

∫ ∞
0

xλ2e−xdx,

so

eλ0 =
(−λ1)λ2+1

Γ(λ2 + 1)
, or λ0 = (λ2 + 1) ln(−λ1)− ln Γ(λ2 + 1),

where Γ(t) =
∫∞

0 xt−1e−xdx is the Euler gamma function. Thus we know

f(x) =
xk−1e−x/b

Γ(k)bk
, x > 0

is a gamma distribution with shape parameter k = λ2 + 1 and scale parameter b = −λ−1
1 .

From the second constraint, EX = kb = −kλ−1
1 = α1, we get k = −α1λ1 . The last parameter

λ1 can be decided by the last constraint.

3.2 Maximum entropy with marginals. For any joint distribution p(x, y) that has the fixed marginals
p(x) and p(y), we claim that p∗(x, y) = p(x)p(y) maximizing the entropyH(X,Y ) = H(p(x, y)).
And p∗(x, y) is the only maximizing distribution.

Proof: For any distribution p(x, y) that satisfies
∑

y p(x, y) = p(x) and
∑

x p(x, y) = p(y),
we have H(X,Y ) = H(X) + H(Y |X) ≤ H(X) + H(Y ) with equality iff X and Y are
independent. Thus H(X,Y ) gets its maximum H(X) +H(Y ) iff p(x, y) = p(x)p(y).

∗λ1 > 0 makes f(x)→∞ when x→∞; λ1 = 0 makes f(x) = eλ0eλ1x and its integral doesn’t converge on S; when
λ2 ≤ −1, the integral of f(x) on (0, 1) does not converge.

1



Thus, the maximum entropy distribution p(x, y) for the problem is

x\y 1 2 3 p(x)
1 1/3 1/12 1/12 1/2
2 1/6 1/24 1/24 1/4
3 1/6 1/24 1/24 1/4

p(y) 2/3 1/6 1/6

3.3 Rate distortion function with infinite distortion. Considering distribution p(x̂|x) such that

Ed(X, X̂) =
∑
x,x̂

p(x)p(x̂|x)d(x, x̂) =
1
2

[p(x̂ = 0|x = 1) + p(x̂ = 1|x = 0) · ∞] ≤ D,

we have p(x̂ = 1|x = 0) = 0 and thus p(x̂ = 0|x = 0) = 1. Let p denote p(x̂ = 0|x = 1) for
convenience. Then we have

p(x̂ = 0) = 1 · p(x = 0) + p · p(x = 1) =
1 + p

2
.

So
p(x = 0|x̂ = 0) =

p(x̂ = 0|x = 0)p(x = 0)
p(x̂ = 0)

=
1

1 + p
, p(x = 0|x̂ = 1) = 0,

and

I(X; X̂) = H(X)−H(X|X̂)

= 1− p(x̂ = 0)H
(

1
1 + p

)
− p(x̂ = 1)H(0)

= 1− 1 + p

2
H

(
1

1 + p

)
. (1)

Differentiate (1), we have

∂I(X; X̂)
∂p

=
1

2(1 + p)
log p− 1

2
H

(
1

1 + p

)
=

1
2

log
p

1 + p
< 0

since p
1+p < 1. So the minimum of I(X; X̂) is achieved at the maximum of p. From

Ed(X, X̂) =
1
2
p ≤ D

and 0 ≤ p ≤ 1, the maximum of p is min{2D, 1}. So

R(D) = min
Ed(X,X̂)≤D

I(X; X̂) =
[
1− 1 + p

2
H

(
1

1 + p

)]∣∣∣∣
p=min{2D,1}

=

{
1− 1+2D

2 H
(

1
1+2D

)
, 0 ≤ D < 1/2;

0, D ≥ 1/2.

3.4 Rate distortion for binary source with asymmetric distortion. Let p01 denote the cross proba-
bility p(x̂ = 1|x = 0) and p10 denote p(x̂ = 0|x = 1). The distortion is

Ed(X, X̂) =
∑
x,x̂

p(x)p(x̂|x)d(x, x̂) =
1
2

(ap01 + bp10).
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Since

p(x̂ = 0) = p(x̂ = 0|x = 0)p(x = 0) + p(x̂ = 0|x = 1)p(x = 1) =
1
2

(1− p01 + p10),

the mutual information is

I(X; X̂) = H(X̂)−H(X̂|X)

= H

(
1
2

(1− p01 + p10)
)
− 1

2
H (p01)− 1

2
H (p10) . (2)

Thus
∂I(X; X̂)
∂p01

=
1
2

log
1− p01 + p10

1 + p01 − p10
− 1

2
log

1− p01

p01
, (3)

∂I(X; X̂)
∂p10

=
1
2

log
1 + p01 − p10

1− p01 + p10
− 1

2
log

1− p10

p10
. (4)

Since log(·) is a monotonic increasing function, and

1− p01 + p10

1 + p01 − p10
− 1− p01

p01
=

p01 + p10 − 1
p01(1 + p01 − p10)

,

1 + p01 − p10

1− p01 + p10
− 1− p10

p10
=

p01 + p10 − 1
p10(1− p01 + p10)

,

and |p01 − p10| ≤ 1, we have sgn
(
∂I(X;X̂)
∂p01

)
= sgn

(
∂I(X;X̂)
∂p10

)
= sgn (p01 + p10 − 1). Then we

can decrease I(X; X̂) by decreasing p01 and/or p10 when p01 + p10 > 1, or by increasing p01

and/or p10 when p01 + p10 < 1. The minimum of I(X; X̂), which is 0, is achieved when
p01 + p10 = 1.† However, Ed(X, X̂) ≤ D restricts that ap01 + bp10 ≤ 2D. So

(a) When a ≤ 2D or b ≤ 2D, p01 + p10 = 1 can be achieved, either when p01 = 1, p10 = 0 or
when p01 = 0, p10 = 1. So now R(D) = 0 .

(b) When a > 2D and b > 2D, p01 + p10 < 1. However, from the above discussion, the
minimum of I(X; X̂) is achieved at the boundary of ap01 +bp10 = 2D, since we can always
increase p01 and/or p10 when ap01 + bp10 < 2D, to decrease the mutual information. Thus
we can use the method of Lagrange multipliers. Let

L = I(X; X̂)− λ(ap01 + bp10 − 2D)

and solve ∂L
∂p01

= ∂L
∂p10

= ∂L
∂λ = 0, i.e.,

∂I(X; X̂)
∂p01

− λa =
∂I(X; X̂)
∂p10

− λb = ap01 + bp10 − 2D = 0.

After eliminating the parameter λ and using (3) and (4), we get{
(a+ b) log 1−p01+p10

1+p01−p10
+ a log 1−p10

p10
− b log 1−p01

p01
= 0,

ap01 + bp10 − 2D = 0.

Solving these equations and then using (2), we can get the minimum of I(X; X̂), i.e.,
R(D). (If no solutions are found, the minimum of I(X; X̂) is at one of the two ends:
(p01 = 2D

a , p10 = 0) and (p01 = 0, p10 = 2D
b ).)

†When p01 + p10 = 1, H
(

1
2
(1− p01 + p10)

)
= H(p10) and H(p01) = H(1− p10) = H(p10), so I(X; X̂) = 0.
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3.5 Shannon lower bound for the rate distortion function. Let P(D) = {p :
∑m

i=1 pidi ≤ D}. Thus

φ(D) = max
p∈P(D)

H(p). (5)

(a) For any D′, D′′ ≥ 0, and λ ∈ [0, 1], let

p′ = arg max
p∈P(D′)

H(p), p′′ = arg max
p∈P(D′′)

H(p),

and p(λ) = λp′ + (1− λ)p′′. Thus the concavity of H(p) gives

H(p(λ)) ≥ λH(p′) + (1− λ)H(p′′) = λφ(D′) + (1− λ)φ(D′′). (6)

Since p′ ∈ P(D′) and p′′ ∈ P(D′′), we have
∑m

i=1 p
′
idi ≤ D′ and

∑m
i=1 p

′′
i di ≤ D′′, and

m∑
i=1

p
(λ)
i di = λ

m∑
i=1

p′idi + (1− λ)
m∑
i=1

p′′i di ≤ λD′ + (1− λ)D′′,

i.e., p(λ) ∈ P(λD′ + (1− λ)D′′). Together with (5) and (6), this gives

φ(λD′ + (1− λ)D′′) = max
p∈P(λD′+(1−λ)D′′)

H(p) ≥ H(p(λ)) ≥ λφ(D′) + (1− λ)φ(D′′).

So φ(D) is a concave function of D. Besides, since P(D) ⊆ P(D′) when D ≤ D′, we know
φ(D) is also a non-decreasing function of D. �

(b) If Ed(X, X̂) ≤ D, i.e.,∑
x̂

p(x̂)Dx̂ =
∑
x̂

p(x̂)
∑
x

p(x|x̂)d(x, x̂) =
∑
x,x̂

p(x, x̂)d(x, x̂) ≤ D, (7)

we have

I(X; X̂) = H(X)−H(X|X̂) (8)

= H(X)−
∑
x̂

p(x̂)H(X|X̂ = x̂) (9)

≥ H(X)−
∑
x̂

p(x̂)φ(Dx̂) (10)

≥ H(X)− φ

(∑
x̂

p(x̂)Dx̂

)
(11)

≥ H(X)− φ(D). (12)

Here

• (8) is (2.39) in Cover’s book;
• (9) is the definition of the conditional entropy;
• Since for fixed x̂, {d(x, x̂)|x ∈ X} is a permutation of {d1, d2, . . . , dm}, thus from
Dx̂ =

∑
x p(x|x̂)d(x, x̂) we know that one permutation of {p(x|x̂)|x ∈ X}, say p,

satisfies
∑

i pidi = Dx̂, i.e., p ∈ P(Dx̂). Since permutation doesn’t change the entropy,
we have

H(X|X̂ = x̂) = H(p) ≤ φ(Dx̂). (13)

This explains (10);
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• (11) is because of the concavity of φ(D) and p(x̂) ≥ 0 and
∑

x̂ p(x̂) = 1;
• From (7) and φ(D) is non-decreasing, we finally get (12).

(c) From (b) we know if Ed(x, x̂) ≤ D then I(X; X̂) ≥ H(X)− φ(D). So

R(D) = min
Ed(x,x̂)≤D

I(X; X̂) ≥ H(X)− φ(D) . (14)

Let
p∗ = arg max

p∈P(D)
H(p).

Since for any fixed x̂, {d(x, x̂)|x ∈ X} is a permutation of {d1, d2, . . . , dm}, we can make
p(x|x̂) a permutation of p∗ with the same order as d(x, x̂). Thus we have

• Dx̂ =
∑

x p(x|x̂)d(x, x̂) =
∑

i p
∗
i di is the same for all x̂ ∈ X̂ ;

• Dx̂ =
∑

i p
∗
i di ≤ D, since p∗ ∈ P(D);

• H(X|X̂ = x̂) = H(p∗) = φ(D) = φ(Dx̂), since we also have p∗ ∈ P(Dx̂) and Dx̂ ≤ D.

For such p(x|x̂), we have the equalities of (13), (10), (11), and (12). Thus the lower bound
of R(D) can be achieved, i.e., R(D) = H(X)− φ(D).
However, till now we have not prove that such p(x|x̂) meets the source distribution. If any
distribution of X̂, together with such p(x|x̂), can not satisfy the given source distribution,
then we can not claim R(D) = H(X)− φ(D). Luckily, if in addition, we assume that the
source has a uniform distribution and the rows of the distortion matrix are permutations
of each other, such p(x|x̂) can meet the source distribution.
Let X̂ also be uniformly distributed. Since the rows of the distortion matrix are permu-
tations of each other, our way to produce p(x|x̂) assures that

{
p(x|x̂)|x̂ ∈ X̂

}
for fixed x

is a permutation of that of a different x. Thus

p(x) =
∑
x̂

p(x|x̂)p(x̂) =
1
|X̂ |

∑
x̂

p(x|x̂)

is invariant for all x ∈ X , i.e., X is uniformly distributed. So now the source distribution
is met and we have R(D) = H(X)− φ(D). �
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