log & inv

Suppose hypothesis h_t has error ϵ_t. For simple boost, I tried two ways to assign weight to h_t:

- log: $1/\log(1.01 + \epsilon_t)$
- inv: $1/\epsilon_t$

They didn’t show much difference.

Possible causes

- ϵ_t is small ($0.015 \sim 0.045$), thus
 \[\log(1.01 + \epsilon_t) \approx 0.01 + \epsilon_t \]
- boosting is insensitive to small weight changes (?)
Towards the final (best) hypothesis

- Use 12000 samples for training and 3997 for testing
- Select the one with smallest testing error out of no more than 3 candidates

Generalization

Let the out-of-sample error be \(\Pi \). The size of the never-touched test set is \(T \).

The classification error \(e_i \in \{0, 1\} \) for test sample \(i \) is an unbiased estimate of \(\Pi \). Thus the testing error

\[
\nu = \frac{1}{T} \sum_{i=1}^{T} e_i
\]

is also an unbiased estimate of \(\Pi \).

For big \(T \), \(\nu \) can be regarded as a Gaussian with mean \(\Pi \) and standard deviation

\[
\sigma = \sqrt{\frac{\pi(1-\pi)}{T}} \approx \sqrt{\frac{\nu(1-\nu)}{T}}.
\]

The 95% confidence interval of \(\Pi \) is

\[
[\nu - 1.96\sigma, \nu + 1.96\sigma]
\]

since

\[
\int_{1.96}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx \approx 2.5%.
\]
One candidate

For AdaBoost.M2 with stochastic gradient descent, I got $\nu = 2.752\%$. Then with high probability Π is within $[2.24\%, 3.26\%]$