
CS 138b Computer Algorithm
Homework #15

Ling Li, ling@cs.caltech.edu
March 5, 2001

15.1 Matching, Components, and Edge cover (Collaborate with Xin Yu)

First show ` = c by proving ` ≤ c and c ≤ `.

• For a maximum matching M in G, let V ′ be the set of vertices covered by M . Since any
vertex in V ′ is incident on some edge in M and M ⊆ E, G′ = (V ′,M) is a subgraph of G.
And the number of connected components in G′ is just `, the size of M . Thus ` ≤ c.

• Let G′ be a subgraph of G with c connected components. Choose an arbitrary edge out from
each connected components in G′. Those edges form a matching in G since no two edges
share a vertex (those components are disjoint from each other). The size of the matching is
c. Hence c ≤ `.

Then prove ` = c = n− k.

• A maximum matching M in G covers 2` vertices. Since there are no isolated vertices in G,
we can always cover the rest n− 2` vertices with at most n− 2` edges. Together with the `
edges in M , we can construct an edge cover with at most n − ` edges. Thus k ≤ n − `, or
` ≤ n− k.

• Let E′′ be a minimum edge cover of G. Since every vertices are on some edge in E′′, so (V,E′′)
is a subgraph of G. And the number of connected components in this subgraph is at least
|V | − |E′′| = n − k. (We can start from a graph G′′ = (V, ∅), with n disjoint vertices as n
connected components. Add edges in E′′ one by one into G′′. Each edge reduces the number
of components in G′′ at most 1. Thus for graph (V,E′′), there are at least n − k connected
components.) Thus c ≥ n− k.

Together with ` = c, we’ve got ` = c = n− k.

1

CS 138b Computer Algorithm
Homework #15

Ling Li, ling@cs.caltech.edu
March 5, 2001

15.2 Tutte matrix

⇒ Suppose G has a perfect matching M . For (u, v) ∈M and u < v, set xu,v = 1, and set all other
variables to 0. Thus each row in T (G) has exactly one non-zero entry with value 1 or −1,
and each column in T (G) also has exactly one non-zero entry with value 1 or −1, since in a
perfect matching each vertex is incident on exactly one edge. Thus we know the determinant
of T (G) is either 1 or −1, not zero. That is, the polynomial det(T (G)) is not zero for some
assignment of xu,v. So det(T (G)) 6= 0.

⇐ Assume det(T (G)) 6= 0. From the analysis below (T (G) is that kind of matrix A), there must
be some permutation which consists of only even-length cycles such that∏

u∈V
T (G)u,p(u) 6= 0.

Since T (G)u,p(u) 6= 0 iff (u, p(u)) ∈ E, there are several even-length cycles

(u1,1, u1,2, . . . , u1,`1), (u2,1, u2,2, . . . , u2,`2), . . . , (um,1, um,2, . . . , um,`m),

such that uj,k are distinct vertices in V and (uj,k, uj,(k+1) mod `j) ∈ E. So there are several
vertex-disjoint even-length circles in graph G and those circles covers all the vertices in G
(since `1 + `2 + · · · + `m = n = |V |). Thus G has a perfect matching. (One example is the
matching consists of edges (uj,2k−1, uj,2k) where j = 1, 2, . . . , `m and k = 1, 2, . . . , `m2 .) �

Below is the analysis used in the above proof.

Let’s explore the condition for |A| 6= 0, where A is a n × n matrix with Au,v = −Av,u, and
|A| = det(A) is the determinant of A. Essentially,

|A| =
∑
p∈Sn

σ(p)
n∏
i=1

Ai,p(i), (1)

where Sn is the set of all permutations of 1, 2, . . . , n and σ(p) is the sign of the permutation p. And
we call σ(p)

∏n
i=1Ai,p(i) a term of |A|.

Any permutation p can be uniquely divided into several cycles,

p = (i1,1, i1,2, . . . , i1,`1), (i2,1, i2,2, . . . , i2,`2), . . . , (im,1, im,2, . . . , im,`m),

That is, ij,k are distinct numbers and, p(ij,k) = ij,(k+1) mod `j for j = 1, 2, . . . ,m and k = 1, 2, . . . , `j ,
and `1+`2+· · ·+`m = n. (Here we may define mod `j takes value 1 to `j .) For another permutation

p′ = (i1,1, i1,2, . . . , i1,`1), . . . , (ij,`j , . . . , ij,2, ij,1), . . . , (im,1, im,2, . . . , im,`m), (2)

where p′ = p except for some j, p′(ij,k) = ij,(k−1) mod `j . Thus σ(p′) = σ(p) since any rotation of the
jth circle changes the sign by (−1)`j−1 and it takes 2 rotations from p to p′.

However, since Au,v = −Av,u, we have

σ(p)
n∏
i=1

Ai,p(i) = (−1)`jσ(p′)
n∏
i=1

Ai,p′(i).

2

CS 138b Computer Algorithm
Homework #15

Ling Li, ling@cs.caltech.edu
March 5, 2001

Thus if p has a cycle of odd length, we can find another permutation p′ by (2) and those terms
associated with p and p′ cancel each other. More generally, we can pair those permutations with
odd-length cycle by using (2) for the smallest odd-length cycle. (For each cycle (i1, i2, . . . , i`)
we can assign a value min {i1, i2, . . . , i`} to it, and the smallest odd-length cycle is the one with
smallest value and odd length.) So after cancellation, (1) becomes

|A| =
∑
p∈En

σ(p)
n∏
i=1

Ai,p(i),

where En is the set of all permutations consists of only even-length cycles.

3

CS 138b Computer Algorithm
Homework #15

Ling Li, ling@cs.caltech.edu
March 5, 2001

15.3 Jobs scheduling

Collect some notations here: dependency graph P = (J,A) such that if (J1, J2) ∈ A then J1 must
be executed before J2; a legal schedule s : J → {1, . . . , T}; and a graph GP = (J,E) where
(J1, J2) ∈ E if there is no path from J1 to J2 or from J2 to J1 in P .

(a) For any legal schedule s, if there is a path from J1 to J2 in P , J1 must be executed before J2.
That is, s(J1) < s(J2). Symmetrically, if there is a path from J2 to J1, s(J2) < s(J1). Thus
a necessary condition for s(J1) = s(J2) is that there is no path from J1 to J2 or from J2 to
J1 in P , or equivalently, (J1, J2) ∈ E. (The symmetry in J1 and J2 also implies that GP is
an undirected graph.)

let M ′ = {(J1, J2) : s(J1) = s(J2)}. From above discussion, M ′ ⊆ E. Since a job is executed
only once, no two edges in M ′ share a vertex. Thus M ′ is a matching in GP . Since M is the
maximum matching in GP , |M ′| ≤ |M |. It is easy to calculate that the schedule s takes time
T = |J | − |M ′|. Thus T ≥ |J | − |M |.

(b) We want to construct a legal schedule from the maximal matching M in GP . First, construct a
mapping f so that for each edge (J1, J2) ∈M , f(J1) = f(J2) = J1,2; and for other vertices Ji,
f(Ji) = Ji. (We just created some new vertices such as J1,2 trying to combine those vertices
in one pair in a matching.) Convert P to P ′ = (J ′, A′) by converting J to J ′ by f and A to
A′ correspondingly (replacing every edge (Ji, Jj) ∈ A with (f(Ji), f(Jj)) in A′). Since one
combination reduces the number of vertices by 1, |J ′| = |J | − |M |. From P is a directed
acyclic graph (dag) and for each edge (J1, J2) ∈M there is no path from J1 to J2 or from J2

to J1 in P , P ′ is also a dag. Then P ′ has a topological sort s′ : J ′ → {1, 2, . . . , |J | − |M |}
such that if there is a path from vi to vj in P ′ then s′(vi) < s′(vj). Let s(Ji) = s′(f(Ji)).
This is a legal schedule since

•
∣∣s−1(i)

∣∣ =
∣∣f−1(i)

∣∣ ≤ 2∀i ∈ {1, 2, . . . , |J | − |M |}.
• If (J1, J2) ∈ A, then (J1, J2) 6∈M and then f(J1) 6= f(J2) and (f(J1), f(J2)) ∈ A′. Thus
s(J1) < s(J2).

And the time is T = |J | − |M |. From (a), this is an optimal schedule.

(c) The idea of the algorithm to find an optimal schedule is in (b):

• Create graph GP and find a maximum matching M in GP . The time complexity is
O(|A| |J |)∗ plus O(|E|

√
|J |)

• Convert P into P ′ by using mapping f . This takes O(|J |+ |A|) time.
• Find the topology sort s′ in P ′, taking time O(|J ′|+ |A′|) ⊆ O(|J |+ |A|).
• Assign s from s′ and f . This takes O(|J |) time.

Totally, the time complexity is O(|J | |A|+ |E|
√
|J |). Since there is no edge (J1, J2) in GP if

there is a path from J1 to J2 or J2 to J1 in P , |E|+ |A| ≤ 2 |J |2. Thus the time complexity
is also O(|J |3).

∗For a dag P , we can first make a topology sort for P and then use the topology sort to calculate GP , which is
simply a tracking down along the sorted edges.

4

CS 138b Computer Algorithm
Homework #15

Ling Li, ling@cs.caltech.edu
March 5, 2001

15.4 Spanning tree with some degree

For any edge set E, define Ev = {e : e ∈ E ∧ v is incident on e} and Ecv = E−Ev. Let dE(v) = |Ev|.
That is, dE(v) is the degree of v in a graph with E as the edge set. And it is obviously Ev ⊆ E
and dE(v) + |Ecv| = |E|.

Given G = (V,E), let Mk = {E′ : E′ ⊆ E ∧ dE′(v) ≤ k}. We want to prove that Mk is a matroid.

• If E′′ ⊆ E′ and E′ ∈ Mk, we have E′′v ⊆ E′v and E′ ⊆ E. Thus dE′′(v) ≤ dE′(v) ≤ k and
E′′ ⊆ E. So E′′ ∈Mk.

• For E′, E′′ ∈ Mk and |E′| < |E′′|, if dE′(v) ≤ k − 1, select an arbitrary edge e ∈ E′′ − E′.
We have dE′∪{e}(v) ≤ dE′(v) + 1 ≤ k and E′ ∪ {e} ⊆ E′ ∪ E′′ ⊆ E. Thus E′ ∪ {e} ∈ Mk. If
dE′(v) = k, ∣∣(E′v)c∣∣ =

∣∣E′∣∣− dE′(v) <
∣∣E′′∣∣− k ≤ ∣∣E′′∣∣− dE′′(v) =

∣∣(E′′v)c
∣∣ ,

since dE′′(v) ≤ k. Select an arbitrary edge e ∈ (E′′v)c − (E′v)
c. Since v is not incident on

e, e 6∈ E′v, so e 6∈ E′. Thus e ∈ E′′ − E′, and dE′∪{e}(v) = dE′(v) = k. So again we have
E′ ∪ {e} ∈Mk.

Thus Mk is a matroid. Since we already know that the collection of forests of G form another
matroid, say Mf . Then Mf ∩Mk gives a set of forests with the degree of v in those forests no more
than k.

Let T be a set with maximum size in Mf ∩Mk. If |T | = |V | − 1, then T must be a tree (since T is
a forest with |V | vertices). Then T is a spanning tree of G with dT (v) ≤ k. If there is a spanning
tree T of G with dT (v) ≤ k, then T ∈Mk and T ∈Mf and thus T ∈Mk ∩Mf . And T must be a
maximum size set in Mf ∩Mk since no forest with |V | vertices can have more than |V | − 1 edges.
So, the problem of whether there is a spanning tree T of G with dT (v) ≤ k, is equivalent to the
problem of whether a maximum size set in Mf ∩Mk has the size |V | − 1.

5

CS 138b Computer Algorithm
Homework #15

Ling Li, ling@cs.caltech.edu
March 5, 2001

15.5 Weighted matching in bipartite graph

Let US = {u : u ∈ U ∧ ∃v ∈ V, (u, v) ∈ S} which is the set of all u’s appearing in S. Consider
the mapping S → US : fU,S((u, v)) = u with u ∈ U . Obviously fU,S is map-on and |US | ≤
|S|. fU,S is a 1-1 map iff S ∈ FU , since when S ∈ FU , (u1, v1) 6= (u2, v2) in S, where u1, u2 ∈
U and v1, v2 ∈ V , gives u1 6= u2, and when fU,S is a 1-1 map, (u1, v1) 6= (u2, v2) in S gives
fU,S((u1, v1)) 6= fU,S((u2, v2)), i.e., u1 6= u2. Thus |US | = |S| iff S ∈ FU . We can similarly define
VS = {v : v ∈ V ∧ ∃u ∈ U, (u, v) ∈ S} and |VS | = |S| iff S ∈ FV .

From reasons below, FU is a matroid.

• If S′ ⊆ S and S ∈ FU , (u1, v1), (u2, v2) ∈ S′ ⇒ (u1, v1), (u2, v2) ∈ S ⇒ u1 6= u2. Thus
S′ ∈ FU .

• For S, S′ ∈ FU and |S′| < |S|, we have |US′ | < |US |. Select an arbitrary u ∈ US −US′ and let
(u, v) = f−1

U,S(u) ∈ S be the pre-image of u. Since u 6∈ US′ , we have (u, v) 6∈ S′ and there is
no (u′, v′) ∈ S′ with u′ = u. Hence S′ ∪ (u, v) ∈ FU .

Similarly, FV is also a matroid. The intersection of these two matroids, FU ∩ FV , consists of all
subsets S of E satisfying that if (u1, v1), (u2, v2) ∈ S and (u1, v1) 6= (u2, v2), then u1 6= u2 and
v1 6= v2. That is, FU ∩ FV consists of all matchings in G = (U, V,E). Thus the problem of finding
a matching in G with the maximum weight is equivalent to the one of finding the maximum weight
set in FU ∩ FV .

Without loss of generality, let p = v0, u1, v1, u2, . . . , uk, vk, uk+1 be an augmenting path with respect
to a matching M in G. Then (ui, vi) ∈ M for i = 1, 2, . . . , k, and v0, uk+1 are free in M , i.e.,
uk+1 6∈ UM . Apply p to M , we get M ′ = M ⊕ p. Then M ′ consists of (vi−1, ui) (or (ui, vi−1)),
for i = 1, 2, . . . , k + 1, and all edges other than (ui, vi) in M . Thus |M ′| = |M | + 1 and UM ′ =
UM ∪ {uk+1}, |UM ′ | = |UM | + 1. Since M ∈ FU , we have |M | = |UM |. So |M ′| = |UM ′ |. Thus
M ′ ∈ FU . Similarly we can prove M ′ ∈ FV . That is, an augmenting path preserves membership in
each of the matroids.

6

CS 138b Computer Algorithm
Homework #15

Ling Li, ling@cs.caltech.edu
March 5, 2001

15.6 Not a matroid (Collaborate with Xin Yu)

It is easy to show that F is an ideal: If I ⊆ J and J ∈ F , then each vertex in J has degree at most
k and thus each vertex in I also has degree no more than k. So I ∈ F . Let dmax be the maximum
degree of vertices in G. We want to show that for k < dmax, F is not a matroid, or, the exchange
axiom doesn’t hold for F .

First, define a procedure to construct subgraphs in G:

Saturate: Given an initial subgraph G′ ∈ F , add an edge e in G to G′ if this keeps G′ ∪ {e} ∈ F .
Continue adding edges in some order, or, random order, until no edge can be added and we
get G′′.

The Saturate procedure gives a ‘maximal’ subgraph G′′ ∈ F and G′ ⊆ G′′, where G′ is the initial
subgraph.

Let v be a vertex in G with degree dmax. Let G′1 be a subgraph of G with only k edges with v
as one endpoint. Since k < dmax, we can find another subgraph G′2 that has only k edges with
v as one endpoint, but different from G′1. Applying Saturate to G′1 and G′2, we get G1 and G2

respectively. Since degrees of v in both G′1 and G′2 are k, no edge with v as one endpoint will be
added during the Saturate procedures and thus G1 6= G2.

If |G1| < |G2|, we’ve done since no edge in G2 − G1 can be added into G1 while keeping G1 ∈ F .
By symmetry, if |G1| > |G2|, we’ve also done. Only when for all such initial graphs G′1 and G′2 we
have |G1| = |G2|, there may be some chance that F is a matroid.

How about k ≥ dmax? When k ≥ dmax, F is basically the collection of all subgraphs of G, and it is
always a matroid. This is because for I, J ∈ F and |I| < |J |, choosing an arbitrary e ∈ J − I gives
I ∪ {e} ∈ F .

So, for any k, F is generally not a matroid for graphs with dmax > k.

7

