15.1 Matching, Components, and Edge cover (Collaborate with Xin Yu)

First show $\ell=c$ by proving $\ell \leq c$ and $c \leq \ell$.

- For a maximum matching M in G, let V^{\prime} be the set of vertices covered by M. Since any vertex in V^{\prime} is incident on some edge in M and $M \subseteq E, G^{\prime}=\left(V^{\prime}, M\right)$ is a subgraph of G. And the number of connected components in G^{\prime} is just ℓ, the size of M. Thus $\ell \leq c$.
- Let G^{\prime} be a subgraph of G with c connected components. Choose an arbitrary edge out from each connected components in G^{\prime}. Those edges form a matching in G since no two edges share a vertex (those components are disjoint from each other). The size of the matching is c. Hence $c \leq \ell$.

Then prove $\ell=c=n-k$.

- A maximum matching M in G covers 2ℓ vertices. Since there are no isolated vertices in G, we can always cover the rest $n-2 \ell$ vertices with at most $n-2 \ell$ edges. Together with the ℓ edges in M, we can construct an edge cover with at most $n-\ell$ edges. Thus $k \leq n-\ell$, or $\ell \leq n-k$.
- Let $E^{\prime \prime}$ be a minimum edge cover of G. Since every vertices are on some edge in $E^{\prime \prime}$, so ($V, E^{\prime \prime}$) is a subgraph of G. And the number of connected components in this subgraph is at least $|V|-\left|E^{\prime \prime}\right|=n-k$. (We can start from a graph $G^{\prime \prime}=(V, \emptyset)$, with n disjoint vertices as n connected components. Add edges in $E^{\prime \prime}$ one by one into $G^{\prime \prime}$. Each edge reduces the number of components in $G^{\prime \prime}$ at most 1 . Thus for graph ($V, E^{\prime \prime}$), there are at least $n-k$ connected components.) Thus $c \geq n-k$.

Together with $\ell=c$, we've got $\ell=c=n-k$.

15.2 Tutte matrix

\Rightarrow Suppose G has a perfect matching M. For $(u, v) \in M$ and $u<v$, set $x_{u, v}=1$, and set all other variables to 0 . Thus each row in $T(G)$ has exactly one non-zero entry with value 1 or -1 , and each column in $T(G)$ also has exactly one non-zero entry with value 1 or -1 , since in a perfect matching each vertex is incident on exactly one edge. Thus we know the determinant of $T(G)$ is either 1 or -1 , not zero. That is, the polynomial $\operatorname{det}(T(G))$ is not zero for some assignment of $x_{u, v}$. So $\operatorname{det}(T(G)) \neq 0$.
\Leftarrow Assume $\operatorname{det}(T(G)) \neq 0$. From the analysis below $(T(G)$ is that kind of matrix A), there must be some permutation which consists of only even-length cycles such that

$$
\prod_{u \in V} T(G)_{u, p(u)} \neq 0
$$

Since $T(G)_{u, p(u)} \neq 0$ iff $(u, p(u)) \in E$, there are several even-length cycles

$$
\left(u_{1,1}, u_{1,2}, \ldots, u_{1, \ell_{1}}\right),\left(u_{2,1}, u_{2,2}, \ldots, u_{2, \ell_{2}}\right), \ldots,\left(u_{m, 1}, u_{m, 2}, \ldots, u_{m, \ell_{m}}\right)
$$

such that $u_{j, k}$ are distinct vertices in V and $\left(u_{j, k}, u_{j,(k+1) \bmod \ell_{j}}\right) \in E$. So there are several vertex-disjoint even-length circles in graph G and those circles covers all the vertices in G (since $\ell_{1}+\ell_{2}+\cdots+\ell_{m}=n=|V|$). Thus G has a perfect matching. (One example is the matching consists of edges $\left(u_{j, 2 k-1}, u_{j, 2 k}\right)$ where $j=1,2, \ldots, \ell_{m}$ and $k=1,2, \ldots, \frac{\ell_{m}}{2}$.)

Below is the analysis used in the above proof.
Let's explore the condition for $|A| \neq 0$, where A is a $n \times n$ matrix with $A_{u, v}=-A_{v, u}$, and $|A|=\operatorname{det}(A)$ is the determinant of A. Essentially,

$$
\begin{equation*}
|A|=\sum_{p \in S_{n}} \sigma(p) \prod_{i=1}^{n} A_{i, p(i)} \tag{1}
\end{equation*}
$$

where S_{n} is the set of all permutations of $1,2, \ldots, n$ and $\sigma(p)$ is the sign of the permutation p. And we call $\sigma(p) \prod_{i=1}^{n} A_{i, p(i)}$ a term of $|A|$.
Any permutation p can be uniquely divided into several cycles,

$$
p=\left(i_{1,1}, i_{1,2}, \ldots, i_{1, \ell_{1}}\right),\left(i_{2,1}, i_{2,2}, \ldots, i_{2, \ell_{2}}\right), \ldots,\left(i_{m, 1}, i_{m, 2}, \ldots, i_{m, \ell_{m}}\right),
$$

That is, $i_{j, k}$ are distinct numbers and, $p\left(i_{j, k}\right)=i_{j,(k+1) \bmod \ell_{j}}$ for $j=1,2, \ldots, m$ and $k=1,2, \ldots, \ell_{j}$, and $\ell_{1}+\ell_{2}+\cdots+\ell_{m}=n$. (Here we may define $\bmod \ell_{j}$ takes value 1 to ℓ_{j}.) For another permutation

$$
\begin{equation*}
p^{\prime}=\left(i_{1,1}, i_{1,2}, \ldots, i_{1, \ell_{1}}\right), \ldots,\left(i_{j, \ell_{j}}, \ldots, i_{j, 2}, i_{j, 1}\right), \ldots,\left(i_{m, 1}, i_{m, 2}, \ldots, i_{m, \ell_{m}}\right) \tag{2}
\end{equation*}
$$

where $p^{\prime}=p$ except for some $j, p^{\prime}\left(i_{j, k}\right)=i_{j,(k-1) \bmod \ell_{j}}$. Thus $\sigma\left(p^{\prime}\right)=\sigma(p)$ since any rotation of the $j^{\text {th }}$ circle changes the sign by $(-1)^{\ell_{j}-1}$ and it takes 2 rotations from p to p^{\prime}.
However, since $A_{u, v}=-A_{v, u}$, we have

$$
\sigma(p) \prod_{i=1}^{n} A_{i, p(i)}=(-1)^{\ell_{j}} \sigma\left(p^{\prime}\right) \prod_{i=1}^{n} A_{i, p^{\prime}(i)} .
$$

Thus if p has a cycle of odd length, we can find another permutation p^{\prime} by (2) and those terms associated with p and p^{\prime} cancel each other. More generally, we can pair those permutations with odd-length cycle by using (2) for the smallest odd-length cycle. (For each cycle ($i_{1}, i_{2}, \ldots, i_{\ell}$) we can assign a value $\min \left\{i_{1}, i_{2}, \ldots, i_{\ell}\right\}$ to it, and the smallest odd-length cycle is the one with smallest value and odd length.) So after cancellation, (1) becomes

$$
|A|=\sum_{p \in E_{n}} \sigma(p) \prod_{i=1}^{n} A_{i, p(i)}
$$

where E_{n} is the set of all permutations consists of only even-length cycles.

15.3 Jobs scheduling

Collect some notations here: dependency graph $P=(J, A)$ such that if $\left(J_{1}, J_{2}\right) \in A$ then J_{1} must be executed before J_{2}; a legal schedule $s: J \rightarrow\{1, \ldots, T\}$; and a graph $G_{P}=(J, E)$ where $\left(J_{1}, J_{2}\right) \in E$ if there is no path from J_{1} to J_{2} or from J_{2} to J_{1} in P.
(a) For any legal schedule s, if there is a path from J_{1} to J_{2} in P, J_{1} must be executed before J_{2}. That is, $s\left(J_{1}\right)<s\left(J_{2}\right)$. Symmetrically, if there is a path from J_{2} to $J_{1}, s\left(J_{2}\right)<s\left(J_{1}\right)$. Thus a necessary condition for $s\left(J_{1}\right)=s\left(J_{2}\right)$ is that there is no path from J_{1} to J_{2} or from J_{2} to J_{1} in P, or equivalently, $\left(J_{1}, J_{2}\right) \in E$. (The symmetry in J_{1} and J_{2} also implies that G_{P} is an undirected graph.)
let $M^{\prime}=\left\{\left(J_{1}, J_{2}\right): s\left(J_{1}\right)=s\left(J_{2}\right)\right\}$. From above discussion, $M^{\prime} \subseteq E$. Since a job is executed only once, no two edges in M^{\prime} share a vertex. Thus M^{\prime} is a matching in G_{P}. Since M is the maximum matching in $G_{P},\left|M^{\prime}\right| \leq|M|$. It is easy to calculate that the schedule s takes time $T=|J|-\left|M^{\prime}\right|$. Thus $T \geq|J|-|M|$.
(b) We want to construct a legal schedule from the maximal matching M in G_{P}. First, construct a mapping f so that for each edge $\left(J_{1}, J_{2}\right) \in M, f\left(J_{1}\right)=f\left(J_{2}\right)=J_{1,2}$; and for other vertices J_{i}, $f\left(J_{i}\right)=J_{i}$. (We just created some new vertices such as $J_{1,2}$ trying to combine those vertices in one pair in a matching.) Convert P to $P^{\prime}=\left(J^{\prime}, A^{\prime}\right)$ by converting J to J^{\prime} by f and A to A^{\prime} correspondingly (replacing every edge $\left(J_{i}, J_{j}\right) \in A$ with $\left(f\left(J_{i}\right), f\left(J_{j}\right)\right)$ in $\left.A^{\prime}\right)$. Since one combination reduces the number of vertices by $1,\left|J^{\prime}\right|=|J|-|M|$. From P is a directed acyclic graph (dag) and for each edge $\left(J_{1}, J_{2}\right) \in M$ there is no path from J_{1} to J_{2} or from J_{2} to J_{1} in P, P^{\prime} is also a dag. Then P^{\prime} has a topological sort $s^{\prime}: J^{\prime} \rightarrow\{1,2, \ldots,|J|-|M|\}$ such that if there is a path from v_{i} to v_{j} in P^{\prime} then $s^{\prime}\left(v_{i}\right)<s^{\prime}\left(v_{j}\right)$. Let $s\left(J_{i}\right)=s^{\prime}\left(f\left(J_{i}\right)\right)$. This is a legal schedule since

- $\left|s^{-1}(i)\right|=\left|f^{-1}(i)\right| \leq 2 \forall i \in\{1,2, \ldots,|J|-|M|\}$.
- If $\left(J_{1}, J_{2}\right) \in A$, then $\left(J_{1}, J_{2}\right) \notin M$ and then $f\left(J_{1}\right) \neq f\left(J_{2}\right)$ and $\left(f\left(J_{1}\right), f\left(J_{2}\right)\right) \in A^{\prime}$. Thus $s\left(J_{1}\right)<s\left(J_{2}\right)$.

And the time is $T=|J|-|M|$. From (a), this is an optimal schedule.
(c) The idea of the algorithm to find an optimal schedule is in (b):

- Create graph G_{P} and find a maximum matching M in G_{P}. The time complexity is $O(|A||J|)^{*}$ plus $O(|E| \sqrt{|J|})$
- Convert P into P^{\prime} by using mapping f. This takes $O(|J|+|A|)$ time.
- Find the topology sort s^{\prime} in P^{\prime}, taking time $O\left(\left|J^{\prime}\right|+\left|A^{\prime}\right|\right) \subseteq O(|J|+|A|)$.
- Assign s from s^{\prime} and f. This takes $O(|J|)$ time.

Totally, the time complexity is $O(|J||A|+|E| \sqrt{|J|})$. Since there is no edge (J_{1}, J_{2}) in G_{P} if there is a path from J_{1} to J_{2} or J_{2} to J_{1} in $P,|E|+|A| \leq 2|J|^{2}$. Thus the time complexity is also $O\left(|J|^{3}\right)$.

[^0]
15.4 Spanning tree with some degree

For any edge set E, define $E_{v}=\{e: e \in E \wedge v$ is incident on $e\}$ and $E_{v}^{c}=E-E_{v}$. Let $d_{E}(v)=\left|E_{v}\right|$. That is, $d_{E}(v)$ is the degree of v in a graph with E as the edge set. And it is obviously $E_{v} \subseteq E$ and $d_{E}(v)+\left|E_{v}^{c}\right|=|E|$.
Given $G=(V, E)$, let $M_{k}=\left\{E^{\prime}: E^{\prime} \subseteq E \wedge d_{E^{\prime}}(v) \leq k\right\}$. We want to prove that M_{k} is a matroid.

- If $E^{\prime \prime} \subseteq E^{\prime}$ and $E^{\prime} \in M_{k}$, we have $E_{v}^{\prime \prime} \subseteq E_{v}^{\prime}$ and $E^{\prime} \subseteq E$. Thus $d_{E^{\prime \prime}}(v) \leq d_{E^{\prime}}(v) \leq k$ and $E^{\prime \prime} \subseteq E$. So $E^{\prime \prime} \in M_{k}$.
- For $E^{\prime}, E^{\prime \prime} \in M_{k}$ and $\left|E^{\prime}\right|<\left|E^{\prime \prime}\right|$, if $d_{E^{\prime}}(v) \leq k-1$, select an arbitrary edge $e \in E^{\prime \prime}-E^{\prime}$. We have $d_{E^{\prime} \cup\{e\}}(v) \leq d_{E^{\prime}}(v)+1 \leq k$ and $E^{\prime} \cup\{e\} \subseteq E^{\prime} \cup E^{\prime \prime} \subseteq E$. Thus $E^{\prime} \cup\{e\} \in M_{k}$. If $d_{E^{\prime}}(v)=k$,

$$
\left|\left(E_{v}^{\prime}\right)^{c}\right|=\left|E^{\prime}\right|-d_{E^{\prime}}(v)<\left|E^{\prime \prime}\right|-k \leq\left|E^{\prime \prime}\right|-d_{E^{\prime \prime}}(v)=\left|\left(E_{v}^{\prime \prime}\right)^{c}\right|,
$$

since $d_{E^{\prime \prime}}(v) \leq k$. Select an arbitrary edge $e \in\left(E_{v}^{\prime \prime}\right)^{c}-\left(E_{v}^{\prime}\right)^{c}$. Since v is not incident on $e, e \notin E_{v}^{\prime}$, so $e \notin E^{\prime}$. Thus $e \in E^{\prime \prime}-E^{\prime}$, and $d_{E^{\prime} \cup\{e\}}(v)=d_{E^{\prime}}(v)=k$. So again we have $E^{\prime} \cup\{e\} \in M_{k}$.

Thus M_{k} is a matroid. Since we already know that the collection of forests of G form another matroid, say M_{f}. Then $M_{f} \cap M_{k}$ gives a set of forests with the degree of v in those forests no more than k.

Let T be a set with maximum size in $M_{f} \cap M_{k}$. If $|T|=|V|-1$, then T must be a tree (since T is a forest with $|V|$ vertices). Then T is a spanning tree of G with $d_{T}(v) \leq k$. If there is a spanning tree T of G with $d_{T}(v) \leq k$, then $T \in M_{k}$ and $T \in M_{f}$ and thus $T \in M_{k} \cap M_{f}$. And T must be a maximum size set in $M_{f} \cap M_{k}$ since no forest with $|V|$ vertices can have more than $|V|-1$ edges. So, the problem of whether there is a spanning tree T of G with $d_{T}(v) \leq k$, is equivalent to the problem of whether a maximum size set in $M_{f} \cap M_{k}$ has the size $|V|-1$.

15.5 Weighted matching in bipartite graph

Let $U_{S}=\{u: u \in U \wedge \exists v \in V,(u, v) \in S\}$ which is the set of all u 's appearing in S. Consider the mapping $S \rightarrow U_{S}: f_{U, S}((u, v))=u$ with $u \in U$. Obviously $f_{U, S}$ is map-on and $\left|U_{S}\right| \leq$ $|S| . f_{U, S}$ is a 1-1 map iff $S \in F_{U}$, since when $S \in F_{U},\left(u_{1}, v_{1}\right) \neq\left(u_{2}, v_{2}\right)$ in S, where $u_{1}, u_{2} \in$ U and $v_{1}, v_{2} \in V$, gives $u_{1} \neq u_{2}$, and when $f_{U, S}$ is a 1-1 map, $\left(u_{1}, v_{1}\right) \neq\left(u_{2}, v_{2}\right)$ in S gives $f_{U, S}\left(\left(u_{1}, v_{1}\right)\right) \neq f_{U, S}\left(\left(u_{2}, v_{2}\right)\right)$, i.e., $u_{1} \neq u_{2}$. Thus $\left|U_{S}\right|=|S|$ iff $S \in F_{U}$. We can similarly define $V_{S}=\{v: v \in V \wedge \exists u \in U,(u, v) \in S\}$ and $\left|V_{S}\right|=|S|$ iff $S \in F_{V}$.
From reasons below, F_{U} is a matroid.

- If $S^{\prime} \subseteq S$ and $S \in F_{U},\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right) \in S^{\prime} \Rightarrow\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right) \in S \Rightarrow u_{1} \neq u_{2}$. Thus $S^{\prime} \in F_{U}$.
- For $S, S^{\prime} \in F_{U}$ and $\left|S^{\prime}\right|<|S|$, we have $\left|U_{S^{\prime}}\right|<\left|U_{S}\right|$. Select an arbitrary $u \in U_{S}-U_{S^{\prime}}$ and let $(u, v)=f_{U, S}^{-1}(u) \in S$ be the pre-image of u. Since $u \notin U_{S^{\prime}}$, we have $(u, v) \notin S^{\prime}$ and there is no $\left(u^{\prime}, v^{\prime}\right) \in S^{\prime}$ with $u^{\prime}=u$. Hence $S^{\prime} \cup(u, v) \in F_{U}$.

Similarly, F_{V} is also a matroid. The intersection of these two matroids, $F_{U} \cap F_{V}$, consists of all subsets S of E satisfying that if $\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right) \in S$ and $\left(u_{1}, v_{1}\right) \neq\left(u_{2}, v_{2}\right)$, then $u_{1} \neq u_{2}$ and $v_{1} \neq v_{2}$. That is, $F_{U} \cap F_{V}$ consists of all matchings in $G=(U, V, E)$. Thus the problem of finding a matching in G with the maximum weight is equivalent to the one of finding the maximum weight set in $F_{U} \cap F_{V}$.
Without loss of generality, let $p=v_{0}, u_{1}, v_{1}, u_{2}, \ldots, u_{k}, v_{k}, u_{k+1}$ be an augmenting path with respect to a matching M in G. Then $\left(u_{i}, v_{i}\right) \in M$ for $i=1,2, \ldots, k$, and v_{0}, u_{k+1} are free in M, i.e., $u_{k+1} \notin U_{M}$. Apply p to M, we get $M^{\prime}=M \oplus p$. Then M^{\prime} consists of $\left(v_{i-1}, u_{i}\right)\left(\right.$ or $\left(u_{i}, v_{i-1}\right)$), for $i=1,2, \ldots, k+1$, and all edges other than $\left(u_{i}, v_{i}\right)$ in M. Thus $\left|M^{\prime}\right|=|M|+1$ and $U_{M^{\prime}}=$ $U_{M} \cup\left\{u_{k+1}\right\},\left|U_{M^{\prime}}\right|=\left|U_{M}\right|+1$. Since $M \in F_{U}$, we have $|M|=\left|U_{M}\right|$. So $\left|M^{\prime}\right|=\left|U_{M^{\prime}}\right|$. Thus $M^{\prime} \in F_{U}$. Similarly we can prove $M^{\prime} \in F_{V}$. That is, an augmenting path preserves membership in each of the matroids.

15.6 Not a matroid (Collaborate with Xin Yu)

It is easy to show that F is an ideal: If $I \subseteq J$ and $J \in F$, then each vertex in J has degree at most k and thus each vertex in I also has degree no more than k. So $I \in F$. Let $d_{\text {max }}$ be the maximum degree of vertices in G. We want to show that for $k<d_{\max }, F$ is not a matroid, or, the exchange axiom doesn't hold for F.

First, define a procedure to construct subgraphs in G :

Saturate: Given an initial subgraph $G^{\prime} \in F$, add an edge e in G to G^{\prime} if this keeps $G^{\prime} \cup\{e\} \in F$. Continue adding edges in some order, or, random order, until no edge can be added and we get $G^{\prime \prime}$.

The Saturate procedure gives a 'maximal' subgraph $G^{\prime \prime} \in F$ and $G^{\prime} \subseteq G^{\prime \prime}$, where G^{\prime} is the initial subgraph.

Let v be a vertex in G with degree $d_{\max }$. Let G_{1}^{\prime} be a subgraph of G with only k edges with v as one endpoint. Since $k<d_{\text {max }}$, we can find another subgraph G_{2}^{\prime} that has only k edges with v as one endpoint, but different from G_{1}^{\prime}. Applying Saturate to G_{1}^{\prime} and G_{2}^{\prime}, we get G_{1} and G_{2} respectively. Since degrees of v in both G_{1}^{\prime} and G_{2}^{\prime} are k, no edge with v as one endpoint will be added during the Saturate procedures and thus $G_{1} \neq G_{2}$.
If $\left|G_{1}\right|<\left|G_{2}\right|$, we've done since no edge in $G_{2}-G_{1}$ can be added into G_{1} while keeping $G_{1} \in F$. By symmetry, if $\left|G_{1}\right|>\left|G_{2}\right|$, we've also done. Only when for all such initial graphs G_{1}^{\prime} and G_{2}^{\prime} we have $\left|G_{1}\right|=\left|G_{2}\right|$, there may be some chance that F is a matroid.

How about $k \geq d_{\max }$? When $k \geq d_{\max }, F$ is basically the collection of all subgraphs of G, and it is always a matroid. This is because for $I, J \in F$ and $|I|<|J|$, choosing an arbitrary $e \in J-I$ gives $I \cup\{e\} \in F$.

So, for any k, F is generally not a matroid for graphs with $d_{\max }>k$.

[^0]: ${ }^{*}$ For a dag P, we can first make a topology sort for P and then use the topology sort to calculate G_{P}, which is simply a tracking down along the sorted edges.

