
CS 138b Computer Algorithm
Homework #14

Ling Li, ling@cs.caltech.edu
February 23, 2001

14.1 Construct the level graph

Let’s modify BFS slightly to construct the level graph LG = (V ′, E′) of G = (V,E, c) out of a
source s ∈ V . We will use a queue Q and an array l containing levels of vertices.

Initialize. Q = [s]; Allocate n units for l, where n = |V |; l(s) = 0 and l(u) = −1 for all other
vertices; V ′ = {s}, E′ = ∅.

Advance. u := pop(Q). ∀(u, v) ∈ E: if l(v) < 0, l(v) := l(u) + 1, push(Q, v), V ′ = V ′ ∪ {v},
E′ = E′ ∪ {(u, v)}. Repeat Advance until Q is empty.

The time for Initialize is O(n). In Advance, any vertex requires at most 1 pair of push/pop
operation, and other operations are performed at most once for every edge. Thus the time is
O(m+ n). The total running time is O(m+ n).

1

CS 138b Computer Algorithm
Homework #14

Ling Li, ling@cs.caltech.edu
February 23, 2001

14.2 Binary capacities

Apply Dinic’s algorithm to G. I want to show that if all capacities of G are 0 or 1, the time
complexity is O(mn). Below the bold font refers to operations in Dinic’s algorithm.

When all capacities are 0 or 1, all edges in a path flow are saturated thus will all be deleted
in Augment. Thus in one phase, each edge of G will be operated by Advance, Retreat and
Augment at most once (totally at most 3 operations). And in Retreat, a vertex is deleted with its
edges, so no more than O(m) time is needed. Together with the O(m) time needed for Initialize,
the total time for one phase is still O(m). Because there are at most n phases, the total time is
O(mn).

2

CS 138b Computer Algorithm
Homework #14

Ling Li, ling@cs.caltech.edu
February 23, 2001

14.3 König-Egerváry theorem

For any matching of size k and any cover with size k′ in A, we have k ≤ k′. This is because any
pair {i`, j`} in the matching needs a row or column to cover, and those rows and columns must
be distinct since all i` are distinct and all j` are distinct. Thus kmax ≤ k′min, where kmax is the
maximum size of a matching and k′min is the least size of a cover.

Consider A as the adjacency matrix of a bipartite graph G = (U, V,E), with U = {ui}, V = {vj},
and a directed edge (ui, vj) ∈ E iff Ai,j = 1. Thus the vertices in set U correspond to rows in A and
the vertices in set V correspond to rows in B. Add a new source vertex s and a new sink vertex t,
connect s to every vertex in U , and connect every vertex in V to t. Assign every edge capacity 1.
Thus we get a capacitated graph G′.

Any integral flow f in G′ corresponds to a matching in A, if we take every edge (ui, vj) used by f
as a pair {i, j} in the matching. Conversely, any matching in A corresponds to an integral flow in
G′. Therefore, kmax = |fmax| = c(B1, B2), where fmax is a max flow and B1, B2 a min cut in G′.

Without loss of generality, assume s ∈ B1 and t ∈ B2. Let Ui = Bi ∩ U and Vi = Bi ∩ V . Then
B1 = {s} ∪U1 ∪ V1 and B2 = {t} ∪U2 ∪ V2. We can construct a cover in A from B1, B2 as follows.
Let

R = {row i : ui ∈ U1 and ∃v ∈ V2 so that c(ui, v) = 1, or ui ∈ U2}

and C = {column j : vj ∈ V1}. Since for any pair {i, j} for which Ai,j = 1, we have c(ui, vj) = 1.
If vj ∈ V1, then column j ∈ C; If vj ∈ V2, then row i ∈ R. Thus R ∪ C is a cover in A. The size of
this cover is

|R|+ |C| ≤ |U2|+ |V1|+
∑

u∈U1,v∈V2

c(u, v).

From

c(B1, B2) =
∑

u∈B1,v∈B2

c(u, v)

=
∑
u∈U2

c(s, u) +
∑
v∈V1

c(v, t) +
∑

u∈U1,v∈V2

c(u, v)

= |U2|+ |V1|+
∑

u∈U1,v∈V2

c(u, v),

and k′min is the least size of the cover, we observe

k′min ≤ c(B1, B2) = kmax.

So finally we get kmax = k′min.

(In fact, we can construct the min cut B1, B2 by let B1 contain all the vertices that can be visited
from s in the residual graph of fmax in G′. Then

∑
u∈U1,v∈V2

c(u, v) must be 0 and thus c(B1, B2) =
|R|+ |C|. This can be proved by contradiction. If there is an edge (u, v) with u ∈ U1, v ∈ V2, and
c(u, v) = 1, then (u, v) is also in the residual graph, otherwise there is a flow through (u, v) and
then u 6∈ B1. Thus v can also be reached from s, which contradicts with v ∈ B2.)

3

CS 138b Computer Algorithm
Homework #14

Ling Li, ling@cs.caltech.edu
February 23, 2001

14.4 Max flow with a sequence of augmenting paths

Let f be a max flow in G. By Lemma 17.4 in Kozen’s book, f can be expressed as a sum of
k (k ≤ |E|) path flows in G (denoted by pi, i = 1, 2, . . . , k) and a flow in G of value 0. For
i = 0, 1, . . . , k, define flow

fi =
i∑

j=1

pj .

Then f0 is a null flow, and |fk| = |f |, fk is a max flow in G.

By the construction of pi (in the proof of Lemma 17.4) and |f | ≥ 0, the value of pi is always
positive. Together with fi = fi−1 + pi is still a flow in G, pi is an augmenting path associated with
flow fi−1 for 1 ≤ i ≤ k.

Thus, starting from the null flow f0, by adding augmenting path pi for i = 1, 2, . . . , k, we can
eventually get a max flow fk in G.

Note that for any max flow in G, we may not be able to write it as the sum of a sequence of
augmenting paths, since a zero flow is not necessarily a null flow. For example, V = {s, x, y, z, t}
and c(s, x) = c(y, t) = 1, c(x, y) = c(y, z) = c(z, x) = 2. Thus the flow f with f(s, x) = f(y, t) =
f(y, z) = f(z, x) = 1, f(x, y) = 2 is a max flow in G. However, it can not be found by a
sequence of augmenting paths. The one that can be found by the above procedures is f with
f(s, x) = f(x, y) = f(y, t) = 1.

4

CS 138b Computer Algorithm
Homework #14

Ling Li, ling@cs.caltech.edu
February 23, 2001

14.5 Edge connectivity

In homework 13.2 (s, t-connectivity problem), by assigning a unit capacity to the graph, we knew
that there are exactly k edge-disjoint paths from s to t, where k is the value of any max flow from
s to t in G. Thus if we want to disconnect s and t in G, we have to remove at least k edges. On the
other hand, we can find a min cut A,B for source s and sink t. Removing all the edges between A
and B disconnects s and t. However, from the Max Flow-Min Cut Theorem, the number of edges
between A and B, which is also the value of this min cut, is k. Therefore, to disconnect s and t
need and only need removing k edges from G.

To disconnect G is equivalent to disconnect a fixed vertex s and some other vertex t in G. Thus,
we can select and fix a vertex s. Then apply the max flow algorithm to G with unit capacities
and pair (s, t), for every vertex t ∈ V − {s}. For each pair (s, t), we get a max flow with value
k(t), which is the minimum number of edges needed to be removed in order to disconnect s and t.
Calculate

K = min
t∈V−{s}

k(t).

Then it is the edge connectivity of G, i.e., the minimum number of edges that must be removed to
disconnect G.

The max flow algorithm runs |V | − 1 times. The capacitated G has 2 |E| edges and |V | vertices,
since two directed edges with unit capacities are added for one undirected edge in E. Thus we meet
the requirements in the problem.

5

CS 138b Computer Algorithm
Homework #14

Ling Li, ling@cs.caltech.edu
February 23, 2001

14.6 Updating max flow

Lemma: Let G = (V,E, c) and G+ = (V,E, c+) be two capacitated graphs. c+ = c except for
edge (u, v), c+(u, v) = c(u, v) + 1. fmax is a max flow in G and f+

max is a max flow in G+.
Then |fmax| ≤ |f+

max| ≤ |fmax| + 1. Thus for integral capacitated graphs, |f+
max| = |fmax| or

|f+
max| = |fmax|+ 1.

Proof: Since G and G+ share the same V and E, a min cut A,B in G is also a cut in G+.
By the construction of c+, we have c+(A,B) ≤ c(A,B) + 1. Thus |f+

max| ≤ c+(A,B) ≤
c(A,B)+1 = |fmax|+1. Since any flow in G is also a flow in G+, we also have |fmax| ≤ |f+

max|.
Therefore |fmax| ≤ |f+

max| ≤ |fmax|+ 1. For integral capacities, this equals |f+
max| = |fmax| or

|f+
max| = |fmax|+ 1.

(a) Let fmax be the given max flow in G, and G+ be the capacitated graph with the capacity of
edge (u, v) increased by 1. By the Lemma, the value of a max flow in G+ is either |fmax| or
|fmax|+ 1. Thus by adding at most 1 augmenting path to fmax, we can get a max flow in G+.
The algorithm is

1. Calculate the residual graph G+
fmax

associated with fmax in G+ with time O(m).

2. Find an augmenting path in G+
fmax

by BFS with time O(m).

3. If no augmenting path is found, fmax is a max flow in G+. Otherwise adding the
augmenting path to fmax (with time O(n)) and the new flow is a max flow in G+.

Thus, the total time is O(m+ n).

(b) Let fmax be the given max flow in G, and G− be the capacitated graph with the capacity of
edge (u, v) decreased by 1. G can be taken as (G−)+. By the Lemma, the value of a max
flow in G− is either |fmax| or |fmax| − 1. As in the proof of the Lemma, we can first find a
flow f in G− with value |fmax| − 1 by decreasing fmax along some path. Thus by adding at
most 1 augmenting path to f , we can get a max flow in G−. The algorithm is

1. Find a path p in fmax (that is, an edge (u′, v′) will be explored iff fmax(u′, v′) > 0) from
s to t containing edge (u, v) by BFS, with time O(m).

2. Construct flow f in G− by decreasing fmax by 1 along p. The time is O(n).

3. Calculate the residual graph G−f associated with f in G− with time O(m).

4. Find an augmenting path in G−f by BFS with time O(m).

5. If no augmenting path is found, f is a max flow in G−. Otherwise adding the augmenting
path to f (with time O(n)) and the new flow is a max flow in G−.

Thus, the total time is O(m+ n).

6

