14.1 Construct the level graph

Let's modify BFS slightly to construct the level graph $L_{G}=\left(V^{\prime}, E^{\prime}\right)$ of $G=(V, E, c)$ out of a source $s \in V$. We will use a queue Q and an array l containing levels of vertices.

Initialize. $Q=[s]$; Allocate n units for l, where $n=|V| ; l(s)=0$ and $l(u)=-1$ for all other vertices; $V^{\prime}=\{s\}, E^{\prime}=\emptyset$.

Advance. $u:=\operatorname{pop}(Q) . \forall(u, v) \in E:$ if $l(v)<0, l(v):=l(u)+1, \operatorname{push}(Q, v), V^{\prime}=V^{\prime} \cup\{v\}$, $E^{\prime}=E^{\prime} \cup\{(u, v)\}$. Repeat Advance until Q is empty.

The time for Initialize is $O(n)$. In Advance, any vertex requires at most 1 pair of push/pop operation, and other operations are performed at most once for every edge. Thus the time is $O(m+n)$. The total running time is $O(m+n)$.

14.2 Binary capacities

Apply Dinic's algorithm to G. I want to show that if all capacities of G are 0 or 1 , the time complexity is $O(m n)$. Below the bold font refers to operations in Dinic's algorithm.

When all capacities are 0 or 1 , all edges in a path flow are saturated thus will all be deleted in Augment. Thus in one phase, each edge of G will be operated by Advance, Retreat and Augment at most once (totally at most 3 operations). And in Retreat, a vertex is deleted with its edges, so no more than $O(m)$ time is needed. Together with the $O(m)$ time needed for Initialize, the total time for one phase is still $O(m)$. Because there are at most n phases, the total time is $O(m n)$.

14.3 König-Egerváry theorem

For any matching of size k and any cover with size k^{\prime} in A, we have $k \leq k^{\prime}$. This is because any pair $\left\{i_{\ell}, j_{\ell}\right\}$ in the matching needs a row or column to cover, and those rows and columns must be distinct since all i_{ℓ} are distinct and all j_{ℓ} are distinct. Thus $k_{\max } \leq k_{\min }^{\prime}$, where $k_{\max }$ is the maximum size of a matching and $k_{\min }^{\prime}$ is the least size of a cover.
Consider A as the adjacency matrix of a bipartite graph $G=(U, V, E)$, with $U=\left\{u_{i}\right\}, V=\left\{v_{j}\right\}$, and a directed edge $\left(u_{i}, v_{j}\right) \in E$ iff $A_{i, j}=1$. Thus the vertices in set U correspond to rows in A and the vertices in set V correspond to rows in B. Add a new source vertex s and a new sink vertex t, connect s to every vertex in U, and connect every vertex in V to t. Assign every edge capacity 1 . Thus we get a capacitated graph G^{\prime}.
Any integral flow f in G^{\prime} corresponds to a matching in A, if we take every edge (u_{i}, v_{j}) used by f as a pair $\{i, j\}$ in the matching. Conversely, any matching in A corresponds to an integral flow in G^{\prime}. Therefore, $k_{\max }=\left|f_{\max }\right|=c\left(B_{1}, B_{2}\right)$, where $f_{\max }$ is a max flow and B_{1}, B_{2} a min cut in G^{\prime}.
Without loss of generality, assume $s \in B_{1}$ and $t \in B_{2}$. Let $U_{i}=B_{i} \cap U$ and $V_{i}=B_{i} \cap V$. Then $B_{1}=\{s\} \cup U_{1} \cup V_{1}$ and $B_{2}=\{t\} \cup U_{2} \cup V_{2}$. We can construct a cover in A from B_{1}, B_{2} as follows. Let

$$
R=\left\{\text { row } i: u_{i} \in U_{1} \text { and } \exists v \in V_{2} \text { so that } c\left(u_{i}, v\right)=1, \text { or } u_{i} \in U_{2}\right\}
$$

and $C=\left\{\right.$ column $\left.j: v_{j} \in V_{1}\right\}$. Since for any pair $\{i, j\}$ for which $A_{i, j}=1$, we have $c\left(u_{i}, v_{j}\right)=1$. If $v_{j} \in V_{1}$, then column $j \in C$; If $v_{j} \in V_{2}$, then row $i \in R$. Thus $R \cup C$ is a cover in A. The size of this cover is

$$
|R|+|C| \leq\left|U_{2}\right|+\left|V_{1}\right|+\sum_{u \in U_{1}, v \in V_{2}} c(u, v) .
$$

From

$$
\begin{aligned}
c\left(B_{1}, B_{2}\right) & =\sum_{u \in B_{1}, v \in B_{2}} c(u, v) \\
& =\sum_{u \in U_{2}} c(s, u)+\sum_{v \in V_{1}} c(v, t)+\sum_{u \in U_{1}, v \in V_{2}} c(u, v) \\
& =\left|U_{2}\right|+\left|V_{1}\right|+\sum_{u \in U_{1}, v \in V_{2}} c(u, v),
\end{aligned}
$$

and $k_{\text {min }}^{\prime}$ is the least size of the cover, we observe

$$
k_{\min }^{\prime} \leq c\left(B_{1}, B_{2}\right)=k_{\max }
$$

So finally we get $k_{\text {max }}=k_{\text {min }}^{\prime}$.
(In fact, we can construct the min cut B_{1}, B_{2} by let B_{1} contain all the vertices that can be visited from s in the residual graph of $f_{\max }$ in G^{\prime}. Then $\sum_{u \in U_{1}, v \in V_{2}} c(u, v)$ must be 0 and thus $c\left(B_{1}, B_{2}\right)=$ $|R|+|C|$. This can be proved by contradiction. If there is an edge (u, v) with $u \in U_{1}, v \in V_{2}$, and $c(u, v)=1$, then (u, v) is also in the residual graph, otherwise there is a flow through (u, v) and then $u \notin B_{1}$. Thus v can also be reached from s, which contradicts with $v \in B_{2}$.)

14.4 Max flow with a sequence of augmenting paths

Let f be a max flow in G. By Lemma 17.4 in Kozen's book, f can be expressed as a sum of $k(k \leq|E|)$ path flows in G (denoted by $\left.p_{i}, i=1,2, \ldots, k\right)$ and a flow in G of value 0 . For $i=0,1, \ldots, k$, define flow

$$
f_{i}=\sum_{j=1}^{i} p_{j} .
$$

Then f_{0} is a null flow, and $\left|f_{k}\right|=|f|, f_{k}$ is a max flow in G.
By the construction of p_{i} (in the proof of Lemma 17.4) and $|f| \geq 0$, the value of p_{i} is always positive. Together with $f_{i}=f_{i-1}+p_{i}$ is still a flow in G, p_{i} is an augmenting path associated with flow f_{i-1} for $1 \leq i \leq k$.
Thus, starting from the null flow f_{0}, by adding augmenting path p_{i} for $i=1,2, \ldots, k$, we can eventually get a max flow f_{k} in G.
Note that for any max flow in G, we may not be able to write it as the sum of a sequence of augmenting paths, since a zero flow is not necessarily a null flow. For example, $V=\{s, x, y, z, t\}$ and $c(s, x)=c(y, t)=1, c(x, y)=c(y, z)=c(z, x)=2$. Thus the flow f with $f(s, x)=f(y, t)=$ $f(y, z)=f(z, x)=1, f(x, y)=2$ is a max flow in G. However, it can not be found by a sequence of augmenting paths. The one that can be found by the above procedures is f with $f(s, x)=f(x, y)=f(y, t)=1$.

14.5 Edge connectivity

In homework 13.2 (s, t-connectivity problem), by assigning a unit capacity to the graph, we knew that there are exactly k edge-disjoint paths from s to t, where k is the value of any max flow from s to t in G. Thus if we want to disconnect s and t in G, we have to remove at least k edges. On the other hand, we can find a min cut A, B for source s and $\operatorname{sink} t$. Removing all the edges between A and B disconnects s and t. However, from the Max Flow-Min Cut Theorem, the number of edges between A and B, which is also the value of this min cut, is k. Therefore, to disconnect s and t need and only need removing k edges from G.
To disconnect G is equivalent to disconnect a fixed vertex s and some other vertex t in G. Thus, we can select and fix a vertex s. Then apply the max flow algorithm to G with unit capacities and pair (s, t), for every vertex $t \in V-\{s\}$. For each pair (s, t), we get a max flow with value $k(t)$, which is the minimum number of edges needed to be removed in order to disconnect s and t. Calculate

$$
K=\min _{t \in V-\{s\}} k(t)
$$

Then it is the edge connectivity of G, i.e., the minimum number of edges that must be removed to disconnect G.
The max flow algorithm runs $|V|-1$ times. The capacitated G has $2|E|$ edges and $|V|$ vertices, since two directed edges with unit capacities are added for one undirected edge in E. Thus we meet the requirements in the problem.

14.6 Updating max flow

Lemma: Let $G=(V, E, c)$ and $G^{+}=\left(V, E, c^{+}\right)$be two capacitated graphs. $c^{+}=c$ except for edge $(u, v), c^{+}(u, v)=c(u, v)+1 . f_{\text {max }}$ is a max flow in G and $f_{\max }^{+}$is a max flow in G^{+}. Then $\left|f_{\max }\right| \leq\left|f_{\max }^{+}\right| \leq\left|f_{\max }\right|+1$. Thus for integral capacitated graphs, $\left|f_{\max }^{+}\right|=\left|f_{\max }\right|$ or $\left|f_{\text {max }}^{+}\right|=\left|f_{\max }\right|+1$.

Proof: Since G and G^{+}share the same V and E, a min cut A, B in G is also a cut in G^{+}. By the construction of c^{+}, we have $c^{+}(A, B) \leq c(A, B)+1$. Thus $\left|f_{\max }^{+}\right| \leq c^{+}(A, B) \leq$ $c(A, B)+1=\left|f_{\max }\right|+1$. Since any flow in G is also a flow in G^{+}, we also have $\left|f_{\max }\right| \leq\left|f_{\text {max }}^{+}\right|$. Therefore $\left|f_{\max }\right| \leq\left|f_{\max }^{+}\right| \leq\left|f_{\max }\right|+1$. For integral capacities, this equals $\left|f_{\max }^{+}\right|=\left|f_{\max }\right|$ or $\left|f_{\text {max }}^{+}\right|=\left|f_{\text {max }}\right|+1$.
(a) Let $f_{\max }$ be the given max flow in G, and G^{+}be the capacitated graph with the capacity of edge (u, v) increased by 1 . By the Lemma, the value of a max flow in G^{+}is either $\left|f_{\text {max }}\right|$ or $\left|f_{\max }\right|+1$. Thus by adding at most 1 augmenting path to $f_{\max }$, we can get a max flow in G^{+}. The algorithm is

1. Calculate the residual graph $G_{f_{\max }}^{+}$associated with $f_{\max }$ in G^{+}with time $O(m)$.
2. Find an augmenting path in $G_{f_{\max }}^{+}$by BFS with time $O(m)$.
3. If no augmenting path is found, $f_{\max }$ is a max flow in G^{+}. Otherwise adding the augmenting path to $f_{\max }$ (with time $O(n)$) and the new flow is a max flow in G^{+}.

Thus, the total time is $O(m+n)$.
(b) Let $f_{\max }$ be the given max flow in G, and G^{-}be the capacitated graph with the capacity of edge (u, v) decreased by 1. G can be taken as $\left(G^{-}\right)^{+}$. By the Lemma, the value of a max flow in G^{-}is either $\left|f_{\max }\right|$ or $\left|f_{\max }\right|-1$. As in the proof of the Lemma, we can first find a flow f in G^{-}with value $\left|f_{\max }\right|-1$ by decreasing $f_{\max }$ along some path. Thus by adding at most 1 augmenting path to f, we can get a max flow in G^{-}. The algorithm is

1. Find a path p in $f_{\max }$ (that is, an edge $\left(u^{\prime}, v^{\prime}\right)$ will be explored iff $f_{\max }\left(u^{\prime}, v^{\prime}\right)>0$) from s to t containing edge (u, v) by BFS, with time $O(m)$.
2. Construct flow f in G^{-}by decreasing $f_{\max }$ by 1 along p. The time is $O(n)$.
3. Calculate the residual graph G_{f}^{-}associated with f in G^{-}with time $O(m)$.
4. Find an augmenting path in G_{f}^{-}by BFS with time $O(m)$.
5. If no augmenting path is found, f is a max flow in G^{-}. Otherwise adding the augmenting path to f (with time $O(n)$) and the new flow is a max flow in G^{-}.

Thus, the total time is $O(m+n)$.

