13.1 Maximum augmenting path

(a) Construct $G_{f}=\left(V_{f}, E_{f}, c_{f}\right)$ from $G=(V, E, c)$ and f. Initially $V_{f}=V, E_{f}=\emptyset$. For each edge (u, v) with capacity $c(u, v)$, calculate $r(u, v)=c(u, v)-f(u, v)$ and $r(v, u)=-r(u, v)$. If $r(u, v) \neq 0$, then add edge (u, v) into E_{f} and set $c_{f}(u, v)=r(u, v)$. Otherwise drop this edge. Thus we get G_{f} in $O(m)$.
(b) Use (a) to construct the residual graph G_{f} in $O(m)$ and apply the algorithm below to $\left(G_{f}, s\right)$: Modified Dijkstra (G, u) : Begin with all the vertices of G in the priority queue P with key function k, u with key 0 , and all other vertices with key ∞. Repeat until P is empty:

1. $a:=$ DeleteMinP.
2. For each $(a, b) \in E$: DecreaseKey $(b, \max \{k(a),-c(a, b)\})$. Note that $c(a, b)=0$ if edge (a, b) is not in G_{f}.

Here the only difference is that $\max \{k(a),-c(a, b)\}$ is used instead of $k(a)+d(a, b)$. This makes the algorithm find the minimum negative bottleneck capacity instead of minimum length. Thus in $O((n+m) \log n)$ time the algorithm will find a path with minimum negative bottleneck capacity from s to t, which is the maximum bottleneck capacity path.
The proof is very similar to that of the original Dijkstra algorithm.

$13.2 s, t$-connectivity problem

Assign a unit capacity to each edge in G and find a max flow f of G. If there exist k edge-disjoint paths from s to t, then we can construct a flow by allowing one unit of flow along each of those k paths. So $|f| \geq k$. (Thus if $|f|<k$, there do not exist k edge-disjoint paths from s to t.)

If $|f| \geq k$, by Lemma 17.4 in Kozen's book, we can decomposite f into several path flows and a flow f^{\prime} with $\left|f^{\prime}\right|=0$. Since any edge in G has a unit capacity, a path flow in G can only have value 1 and two path flows extracted from f can not be edge-joint. Thus f consists of exactly $|f| \geq k$ edge-disjoint paths from s to t. Thus we found k edge-disjoint paths.
The time complexity is $O\left(m^{2} n\right)$, since the Edmonds-Karp algorithm is $O\left(m^{2} n\right)$ and for each of at most m path flows we need $O(m)$ (to construct the new graph and find any path from s to t). Here m is the number of edges and n is the number of vertices in G.
For undirected graph, we can construct a directed graph G^{\prime} from G (see homework 13.3) and apply the above algorithm to G^{\prime}.

13.3 Min cut for undirected graph

We can construct a directed graph G^{\prime} from the given undirected graph $G=(V, E)$ and apply the maximum flow to $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$. Then we will get the min cut from the residual graph associated with the max flow in G^{\prime}. This is the main idea.
$G \rightarrow G^{\prime}: V^{\prime}=V$. For each edge $\{u, v\}$ with weight w in E, create two directed edges (u, v) and (v, u) with capacity w for E^{\prime}. Then in $O(m+n)$ time, we create G^{\prime}, where m is the number of edges and n is the number of vertices.
Run Edmonds-Karp algorithm on G^{\prime} to get the max flow f of G^{\prime}. The time complexity is $O\left(m^{2} n\right)$.
From homework 13.1, we can construct the residual graph G_{f}^{\prime} in $O(m)$ time.
Let A consist of all vertices reachable from s by paths in G_{f}^{\prime}. Let $B=V-A$. Thus by the Max Flow-Min Cut Theorem, this is the min cut in G^{\prime}. Thus it is also a min cut for G. The complexity for this step is $O(m+n)$.
Proof of the correctness: It is obvious since the two graphs, G and G^{\prime}, share the same topology structure and the weights are also the same for corresponding edges.

13.4 Girls' diplomas

For the sake of convenience, let's change the procedure of passing diplomas a little: all the girls will first form a circle and then those who get their diplomas drop out. This is exactly the same as the procedure in the problem. However, now it is easier to number the girls.
In the initial circle, number all the girls counterclockwise with numbers 0 to $n-1$. The girl at position i is denoted by g_{i}. Note that all calculations on the subscript (the index of the girl) are $\bmod n$. Thus g_{i} will pass her diploma to g_{i+1} if neither g_{i} nor g_{i+1} gets her own diploma. Let d_{i} be the initial position of g_{i} 's diploma. That is, at first $g_{d_{i}}$ has the diploma of g_{i}.
Let random variable $X_{i, k}$ equal 1 if g_{i} ever passes g_{j} 's diploma, and be 0 otherwise, where $j=i+k$ (remember the $\bmod n$), $0 \leq i<n$ and $1 \leq k<n$. Thus the number of handoffs made by g_{i} is $\sum_{k=1}^{n-1} X_{i, k}$ and the total number of individual handoffs is $\sum_{i=0}^{n-1} \sum_{k=1}^{n-1} X_{i, k}$.
For any $0 \leq i<n, 1 \leq k<n$ and $j=i+k$, there are $n(n-1)$ combinations of d_{i} and d_{j}, since $d_{i} \neq d_{j}$. We want to find out which combinations would have $X_{i, k}=1$. Here are 3 cases:

- $d_{i}=i$. Then g_{i} drops out immediately and obviously $X_{i, k}=0$.
- $d_{i} \in\{j-n, j-n+1, \ldots, i-1\}$ (again, take $\bmod n$). Visually, position d_{i} is left to g_{i} and right to or at g_{j}. To have the chance for g_{i} to pass the diploma of g_{j} before she gets his own diploma, d_{j} must be left to or at g_{i} and right to d_{i}. That is, $X_{i, k}=1$ iff $d_{j} \in\left\{d_{i}+1, \ldots, i-1, i\right\}$.
- $d_{i} \in\{i+1, i+2, \ldots, j-1\}$. For similar reason, $X_{i, k}=1$ still requires $d_{j} \in\left\{d_{i}+1, \ldots, i-1, i\right\}$. However, if $d_{j} \in\left\{d_{i}+1, \ldots, j\right\}$, before meeting g_{i}, the diploma of g_{j} will first meet g_{j} and then drop out together with g_{j}. So in this case, $d_{j} \in\{j+1, \ldots, i-1, i\}$.

Totally there are

$$
\sum_{d_{i}=j-n}^{i-1}\left(i-d_{i}\right)+\sum_{d_{i}=i+1}^{j-1}(i+n-j)=\sum_{t=1}^{n-k} t+(k-1)(n-k)=\frac{(n-k)(n+k-1)}{2}
$$

combinations of d_{i} and d_{j} that make $X_{i, j}=1$. Thus we have

$$
E\left(X_{i, k}\right)=P\left(X_{i, k}=1\right)=\frac{(n-k)(n+k-1)}{2 n(n-1)}=\frac{1}{2}-\frac{k^{2}-k}{2 n(n-1)} .
$$

So

$$
\begin{aligned}
E\left(\sum_{i=0}^{n-1} \sum_{k=1}^{n-1} X_{i, k}\right) & =\sum_{i=0}^{n-1} \sum_{k=1}^{n-1} E\left(X_{i, k}\right) \\
& =\frac{n(n-1)}{2}-\frac{1}{2(n-1)}\left[\sum_{k=1}^{n-1}\left(k^{2}-k\right)\right] \\
& =\frac{n(n-1)}{2}-\frac{1}{2(n-1)}\left[\frac{(n-1) n(2 n-1)}{6}-\frac{(n-1) n}{2}\right] \\
& =\frac{n(2 n-1)}{6} .
\end{aligned}
$$

That is, the expectation of the total number of individual handoffs is $\frac{n(2 n-1)}{6}$.

