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13.1 Maximum augmenting path

(a) Construct Gf = (Vf , Ef , cf ) from G = (V,E, c) and f . Initially Vf = V , Ef = ∅. For each
edge (u, v) with capacity c(u, v), calculate r(u, v) = c(u, v) − f(u, v) and r(v, u) = −r(u, v).
If r(u, v) 6= 0, then add edge (u, v) into Ef and set cf (u, v) = r(u, v). Otherwise drop this
edge. Thus we get Gf in O(m).

(b) Use (a) to construct the residual graph Gf in O(m) and apply the algorithm below to (Gf , s):

Modified Dijkstra (G, u): Begin with all the vertices of G in the priority queue P with key
function k, u with key 0, and all other vertices with key ∞. Repeat until P is empty:

1. a := DeleteMinP .

2. For each (a, b) ∈ E: DecreaseKey(b,max {k(a),−c(a, b)}). Note that c(a, b) = 0 if edge
(a, b) is not in Gf .

Here the only difference is that max {k(a),−c(a, b)} is used instead of k(a) + d(a, b). This
makes the algorithm find the minimum negative bottleneck capacity instead of minimum
length. Thus in O((n+m) logn) time the algorithm will find a path with minimum negative
bottleneck capacity from s to t, which is the maximum bottleneck capacity path.

The proof is very similar to that of the original Dijkstra algorithm.
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13.2 s, t-connectivity problem

Assign a unit capacity to each edge in G and find a max flow f of G. If there exist k edge-disjoint
paths from s to t, then we can construct a flow by allowing one unit of flow along each of those k
paths. So |f | ≥ k. (Thus if |f | < k, there do not exist k edge-disjoint paths from s to t.)

If |f | ≥ k, by Lemma 17.4 in Kozen’s book, we can decomposite f into several path flows and a
flow f ′ with |f ′| = 0. Since any edge in G has a unit capacity, a path flow in G can only have value
1 and two path flows extracted from f can not be edge-joint. Thus f consists of exactly |f | ≥ k
edge-disjoint paths from s to t. Thus we found k edge-disjoint paths.

The time complexity is O(m2n), since the Edmonds-Karp algorithm is O(m2n) and for each of at
most m path flows we need O(m) (to construct the new graph and find any path from s to t). Here
m is the number of edges and n is the number of vertices in G.

For undirected graph, we can construct a directed graph G′ from G (see homework 13.3) and apply
the above algorithm to G′.
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13.3 Min cut for undirected graph

We can construct a directed graph G′ from the given undirected graph G = (V,E) and apply the
maximum flow to G′ = (V ′, E′). Then we will get the min cut from the residual graph associated
with the max flow in G′. This is the main idea.

G → G′: V ′ = V . For each edge {u, v} with weight w in E, create two directed edges (u, v) and
(v, u) with capacity w for E′. Then in O(m + n) time, we create G′, where m is the number of
edges and n is the number of vertices.

Run Edmonds-Karp algorithm on G′ to get the max flow f of G′. The time complexity is O(m2n).

From homework 13.1, we can construct the residual graph G′f in O(m) time.

Let A consist of all vertices reachable from s by paths in G′f . Let B = V − A. Thus by the Max
Flow-Min Cut Theorem, this is the min cut in G′. Thus it is also a min cut for G. The complexity
for this step is O(m+ n).

Proof of the correctness: It is obvious since the two graphs, G and G′, share the same topology
structure and the weights are also the same for corresponding edges.
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13.4 Girls’ diplomas

For the sake of convenience, let’s change the procedure of passing diplomas a little: all the girls
will first form a circle and then those who get their diplomas drop out. This is exactly the same
as the procedure in the problem. However, now it is easier to number the girls.

In the initial circle, number all the girls counterclockwise with numbers 0 to n − 1. The girl at
position i is denoted by gi. Note that all calculations on the subscript (the index of the girl) are
modn. Thus gi will pass her diploma to gi+1 if neither gi nor gi+1 gets her own diploma. Let di be
the initial position of gi’s diploma. That is, at first gdi has the diploma of gi.

Let random variable Xi,k equal 1 if gi ever passes gj ’s diploma, and be 0 otherwise, where j = i+k
(remember the modn), 0 ≤ i < n and 1 ≤ k < n. Thus the number of handoffs made by gi is
n−1∑
k=1

Xi,k and the total number of individual handoffs is
n−1∑
i=0

n−1∑
k=1

Xi,k.

For any 0 ≤ i < n, 1 ≤ k < n and j = i + k, there are n(n − 1) combinations of di and dj , since
di 6= dj . We want to find out which combinations would have Xi,k = 1. Here are 3 cases:

• di = i. Then gi drops out immediately and obviously Xi,k = 0.

• di ∈ {j−n, j−n+1, . . . , i−1} (again, take modn). Visually, position di is left to gi and right
to or at gj . To have the chance for gi to pass the diploma of gj before she gets his own diploma,
dj must be left to or at gi and right to di. That is, Xi,k = 1 iff dj ∈ {di + 1, . . . , i− 1, i}.

• di ∈ {i+1, i+2, . . . , j−1}. For similar reason, Xi,k = 1 still requires dj ∈ {di+1, . . . , i−1, i}.
However, if dj ∈ {di + 1, . . . , j}, before meeting gi, the diploma of gj will first meet gj and
then drop out together with gj . So in this case, dj ∈ {j + 1, . . . , i− 1, i}.

Totally there are

i−1∑
di=j−n

(i− di) +
j−1∑

di=i+1

(i+ n− j) =
n−k∑
t=1

t+ (k − 1)(n− k) =
(n− k)(n+ k − 1)

2

combinations of di and dj that make Xi,j = 1. Thus we have

E(Xi,k) = P (Xi,k = 1) =
(n− k)(n+ k − 1)

2n(n− 1)
=

1
2
− k2 − k

2n(n− 1)
.

So

E

(
n−1∑
i=0

n−1∑
k=1

Xi,k

)
=

n−1∑
i=0

n−1∑
k=1

E(Xi,k)

=
n(n− 1)

2
− 1

2(n− 1)

[
n−1∑
k=1

(k2 − k)

]

=
n(n− 1)

2
− 1

2(n− 1)

[
(n− 1)n(2n− 1)

6
− (n− 1)n

2

]
=

n(2n− 1)
6

.

That is, the expectation of the total number of individual handoffs is n(2n−1)
6 .
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