11.1 Pseudo-random generator

For any integer $k \geq 1$, define

$$
A^{k}=\underbrace{A \circ A \circ \cdots \circ A}_{\text {the number of } A^{\prime} \text { s is } k}
$$

Since $A:\{0,1\}^{m} \rightarrow\{0,1\}^{m+1}$ is a pseudo-random generator, the complexity of A is bounded by a polynomial $|x|^{t}$. Note here we always use m as the length of the input. Thus A^{k} maps $\{0,1\}^{m}$ to $\{0,1\}^{m+k}$, and the complexity of A^{k} (for $k \leq m^{c}-m$) is bounded by

$$
m^{t}+(m+1)^{t}+\cdots+(m+k-1)^{t} \leq k \cdot(m+k)^{t} \leq m^{c(t+1)} .
$$

Thus $A^{k}:\{0,1\}^{m} \rightarrow\{0,1\}^{m+k}$, especially $A^{m^{c}-m}:\{0,1\}^{m} \rightarrow\{0,1\}^{m^{c}}$ is poly-time computable.
For any PPT T, we know $T \circ A^{k}$ for $k \leq m^{c}-m$ is also a PPT. Here for convenience, we define $T \circ A^{k}=T$ for $k=0$. Thus for any $k \leq m^{c}-m$ and $T \circ A^{k}$, since A is a pseudo-random generator, there exists a negligible function v_{k} such that

$$
\left|P_{x \leftarrow U_{m}}\left(T \circ A^{k}(A(x))=1\right)-P_{x \leftarrow U_{m+1}}\left(T \circ A^{k}(x)=1\right)\right|<\nu_{k}(m) .
$$

Thus we have

$$
\begin{aligned}
& \left|P_{x \leftarrow U_{m}}\left(T\left(A^{m^{c}-m}(x)\right)=1\right)-P_{x \leftarrow U_{m} c}(T(x)=1)\right|= \\
& \quad\left|\sum_{k=0}^{m^{c}-m-1}\left(P_{x \leftarrow U_{m}^{c}-k-1}\left(T \circ A^{k}(A(x))=1\right)-P_{x \leftarrow U_{m} c-k}\left(T \circ A^{k}(x)=1\right)\right)\right| \leq \\
& \quad \sum_{k=0}^{m^{c}-m-1}\left|P_{x \leftarrow U_{m^{c}-k-1}}\left(T \circ A^{k}(A(x))=1\right)-P_{x \leftarrow U_{m^{c}-k}}\left(T \circ A^{k}(x)=1\right)\right| \leq \\
& \sum_{k=0}^{m^{c}-m-1} \nu_{k}\left(m^{c}-k-1\right) .
\end{aligned}
$$

It is easy to see that $\sum_{k=0}^{m^{c}-m-1} \nu_{k}\left(m^{c}-k-1\right)$ is also a negligible function of m. Thus for $x \in\{0,1\}^{m}$, $A^{m^{c}-m}(x)$ is indistinguishable $U_{m^{c}}$. Together with $A^{m^{c}-m}$ is poly-time computable, we proved $A^{m^{c}-m}:\{0,1\}^{m} \rightarrow\{0,1\}^{m^{c}}$ is a pseudo-random generator.

11.2 Pairwise independence

Without loss of generality, to prove that X_{1}, \ldots, X_{n} are pairwise independent, we can just prove that X_{1} and X_{2} are independent. Since X_{1}, \ldots, X_{n} are independent, we have

$$
P\left(\bigwedge_{i=1}^{n} X_{i}=x_{i}\right)=\prod_{i=1}^{n} P\left(X_{i}=x_{i}\right) .
$$

Thus for any possible value x_{1} of X_{1} and x_{2} of X_{2},

$$
\begin{align*}
P\left(X_{1}=x_{1} \wedge X_{2}=x_{2}\right) & =\sum_{x_{3}, \ldots, x_{n}} P\left(\bigwedge_{i=1}^{n} X_{i}=x_{i}\right) \tag{1}\\
& =\sum_{x_{3}, \ldots, x_{n}} \prod_{i=1}^{n} P\left(X_{i}=x_{i}\right) \tag{2}\\
& =P\left(X_{1}=x_{1}\right) P\left(X_{2}=x_{2}\right) \prod_{i=3}^{n} \sum_{x_{i}} P\left(X_{i}=x_{i}\right) \tag{3}\\
& =P\left(X_{1}=x_{1}\right) P\left(X_{2}=x_{2}\right) . \tag{4}
\end{align*}
$$

Here the summation in (1) is over all possible values of $X_{3}, \ldots, X_{n} ;(2)$ is due to the independence of X_{1}, \ldots, X_{n}; we get (3) by distributivity; since the summation of $P\left(X_{i}=x_{i}\right)$ is over all possible values of X_{i}, we have $\sum_{x_{i}} P\left(X_{i}=x_{i}\right)=1$. Thus we finally have (4), implying X_{1} and X_{2} are independent.
So X_{1}, \ldots, X_{n} are pairwise independent.

11.3 Number of empty bins

Here is a more general version of the problem. Let $k(1 \leq k \leq n)$ balls be independently and uniformly tossed into n bins. They might occupy m bins, where $1 \leq m \leq k$. Let $p_{n}(k, m)$ denote the possibility that the number of bins occupied by k balls is m. Obviously, $p_{n}(k, 0)=0$ and for $m>k, p_{n}(k, m)=0$. And, $\int_{m=1}^{k} p_{n}(k, m)=1$.
Consider an event that $(k+1)$ balls occupy m bins, $m \leq k+1 \leq n$. For the $(k+1)$ th ball, it may be tossed into an occupied bin, or an empty bin. If it is tossed into an occupied bin, then the first k balls must have already occupied m bins, and the probability of such case is $\frac{m}{n} p_{n}(k, m)$. Otherwise, it is tolled into an empty bin, then the first k balls only occupied ($m-1$) bins, and the probability for this case is $\left(1-\frac{m-1}{n}\right) p_{n}(k, m-1)$. So we get

$$
\begin{equation*}
p_{n}(k+1, m)=\frac{m}{n} p_{n}(k, m)+\left(1-\frac{m-1}{n}\right) p_{n}(k, m-1) . \tag{5}
\end{equation*}
$$

We are interested in the expectation of the number of bins that occupied by k balls. Let $F_{n}(k)$ denote the expectation, i.e.,

$$
F_{n}(k)=\sum_{m=1}^{k} m \cdot p_{n}(k, m) .
$$

By (5), we have

$$
\begin{aligned}
F_{n}(k+1) & =\sum_{m=1}^{k+1} m \cdot p_{n}(k+1, m) \\
& =\sum_{m=1}^{k+1} m \cdot\left[\frac{m}{n} p_{n}(k, m)+\left(1-\frac{m-1}{n}\right) p_{n}(k, m-1)\right] \\
& =\sum_{m=1}^{k+1}\left[\frac{m^{2}}{n} p_{n}(k, m)-\frac{(m-1)^{2}}{n} p_{n}(k, m-1)\right]+\sum_{m=1}^{k+1}\left(m-\frac{m-1}{n}\right) p_{n}(k, m-1) \\
& =0+\sum_{m=1}^{k} p_{n}(k, m)+\left(1-\frac{1}{n}\right) \sum_{m=1}^{k} m \cdot p_{n}(k, m) \\
& =1+\left(1-\frac{1}{n}\right) F_{n}(k) .
\end{aligned}
$$

It is easy to see that for one ball, $F_{n}(1)=1$. Thus

$$
F_{n}(k)=1+\left(1-\frac{1}{n}\right)+\cdots+\left(1-\frac{1}{n}\right)^{k-1}=\frac{1-\left(1-\frac{1}{n}\right)^{k}}{1-\left(1-\frac{1}{n}\right)}=n-n\left(1-\frac{1}{n}\right)^{k}
$$

So for k balls, the expectation of the number of empty bins is

$$
E_{n}(k)=n-F_{n}(k)=n\left(1-\frac{1}{n}\right)^{k}
$$

Especially, for n balls, the expectation is $n\left(1-\frac{1}{n}\right)^{n}$, which approaches n / e in the limit of large n, since we have

$$
\lim _{n \rightarrow+\infty}\left(1-\frac{1}{n}\right)^{n}=e^{-1}
$$

11.4 $\quad \mathrm{NP} \subseteq \mathrm{BPP}$? $\mathrm{NP}=\mathrm{RP}$?

Assume NP $\subseteq \mathbf{B P P}$. For any language $L \in \mathbf{N P}$, the corresponding poly-time verification procedure V accepts the pair (x, y) for at least one "witness" y, if $x \in L$. Thus for any x, we can define a language

$$
L_{x}=\left\{y^{\prime}: y^{\prime} \text { is a prefix of } y \text { and } V \text { accepts }(x, y)\right\}
$$

Thus $L_{x} \in \mathbf{N P}$, since if $y^{\prime} \in L_{x}$, then the corresponding y is such a "witness". So, by our assumption, $L_{x} \in \mathbf{B P P}$.

From homework 10.4, we know there exists a PPT A^{\prime} for L_{x} such that for $y^{\prime} \in L_{x}, P\left(A^{\prime}\left(y^{\prime}\right)=\right.$ 1) $\geq 1-e^{-k}$, and for $y^{\prime} \notin L_{x}, P\left(A^{\prime}\left(y^{\prime}\right)=1\right)<e^{-k}$, where $k=\left|y^{\prime}\right|$ is the length of the input. And further we can design another PPT A by running A^{\prime} for polynomial times of $|x|$ and using the majority vote to decide the output, such that the probability of error is less than e^{-n}, where n is also a polynomial of $|x|$.
For $x \in L$, since V is poly-time computable, the length of y is bounded by a polynomial $n=|x|^{c}$. We want to use A to guess the (at most n) bits of y. At first, we try 0 and 1 as the first bit of y. That is, we run $A\left(y_{1}=0\right)$ and $A\left(y_{1}=1\right)$. If either run gives 1 , take the 'right' bit (for which A returns 1) as y_{1} and we can continue to guess y_{2}. If both runs give 0 , we then check whether we have already obtained the whole y, by running the verification procedure V on the obtained bits of y. Of course, when guessing y_{1} we have no obtained bits of y and V will definitely reject such input. However, this is useful when the other bits of y is under guessing. If the pair of x and the obtained bits of y is accepted, then x is accepted as $x \in L$. Otherwise reject x as $x \notin L$. This procedure continues until x is rejected or accepted or y_{n+1} is reached (thus we reject x).

For $x \in L$, the above procedure runs in poly-time of $|x|$. And the probability that it declares $x \in L$ is at least

$$
\left(1-e^{-n}\right)^{n}>1-n e^{-n}>\frac{1}{2}
$$

For $x \notin L$, since we can not find a y that can be accepted by V, x will definitely be rejected by our procedure. Thus $L \in \mathbf{R P}$, and $\mathbf{N P} \subseteq \mathbf{R P}$.
We have already known that $\mathbf{R P} \subseteq \mathbf{N P}$. Thus from assuming $\mathbf{N P} \subseteq \mathbf{B P P}$ we get $\mathbf{N P}=\mathbf{R P}$.

