
CS 138b Computer Algorithm
Homework #11

Ling Li, ling@cs.caltech.edu
February 2, 2001

11.1 Pseudo-random generator

For any integer k ≥ 1, define
Ak = A ◦A ◦ · · · ◦A︸ ︷︷ ︸

the number of A’s is k

Since A : {0, 1}m → {0, 1}m+1 is a pseudo-random generator, the complexity of A is bounded by a
polynomial |x|t. Note here we always use m as the length of the input. Thus Ak maps {0, 1}m to
{0, 1}m+k, and the complexity of Ak (for k ≤ mc −m) is bounded by

mt + (m+ 1)t + · · ·+ (m+ k − 1)t ≤ k · (m+ k)t ≤ mc(t+1).

Thus Ak : {0, 1}m → {0, 1}m+k, especially Am
c−m : {0, 1}m → {0, 1}mc is poly-time computable.

For any PPT T , we know T ◦ Ak for k ≤ mc −m is also a PPT. Here for convenience, we define
T ◦Ak = T for k = 0. Thus for any k ≤ mc−m and T ◦Ak, since A is a pseudo-random generator,
there exists a negligible function vk such that∣∣∣Px←Um(T ◦Ak(A(x)) = 1)− Px←Um+1(T ◦Ak(x) = 1)

∣∣∣ < νk(m).

Thus we have∣∣Px←Um(T (Am
c−m(x)) = 1)− Px←Umc (T (x) = 1)

∣∣ =∣∣∣∣∣
mc−m−1∑
k=0

(
Px←Umc−k−1

(T ◦Ak(A(x)) = 1)− Px←Umc−k(T ◦Ak(x) = 1)
)∣∣∣∣∣ ≤

mc−m−1∑
k=0

∣∣∣Px←Umc−k−1
(T ◦Ak(A(x)) = 1)− Px←Umc−k(T ◦Ak(x) = 1)

∣∣∣ ≤
mc−m−1∑
k=0

νk(mc − k − 1).

It is easy to see that
∑mc−m−1

k=0 νk(mc−k−1) is also a negligible function of m. Thus for x ∈ {0, 1}m,
Am

c−m(x) is indistinguishable Umc . Together with Am
c−m is poly-time computable, we proved

Am
c−m : {0, 1}m → {0, 1}mc is a pseudo-random generator.

1

CS 138b Computer Algorithm
Homework #11

Ling Li, ling@cs.caltech.edu
February 2, 2001

11.2 Pairwise independence

Without loss of generality, to prove that X1, . . . , Xn are pairwise independent, we can just prove
that X1 and X2 are independent. Since X1, . . . , Xn are independent, we have

P

(
n∧
i=1

Xi = xi

)
=

n∏
i=1

P (Xi = xi).

Thus for any possible value x1 of X1 and x2 of X2,

P (X1 = x1 ∧X2 = x2) =
∑

x3,...,xn

P

(
n∧
i=1

Xi = xi

)
(1)

=
∑

x3,...,xn

n∏
i=1

P (Xi = xi) (2)

= P (X1 = x1)P (X2 = x2)
n∏
i=3

∑
xi

P (Xi = xi) (3)

= P (X1 = x1)P (X2 = x2). (4)

Here the summation in (1) is over all possible values of X3, . . . , Xn; (2) is due to the independence
of X1, . . . , Xn; we get (3) by distributivity; since the summation of P (Xi = xi) is over all possible
values of Xi, we have

∑
xi
P (Xi = xi) = 1. Thus we finally have (4), implying X1 and X2 are

independent.

So X1, . . . , Xn are pairwise independent.

2

CS 138b Computer Algorithm
Homework #11

Ling Li, ling@cs.caltech.edu
February 2, 2001

11.3 Number of empty bins

Here is a more general version of the problem. Let k (1 ≤ k ≤ n) balls be independently and
uniformly tossed into n bins. They might occupy m bins, where 1 ≤ m ≤ k. Let pn(k,m) denote
the possibility that the number of bins occupied by k balls is m. Obviously, pn(k, 0) = 0 and for
m > k, pn(k,m) = 0. And,

∫ k
m=1 pn(k,m) = 1.

Consider an event that (k + 1) balls occupy m bins, m ≤ k + 1 ≤ n. For the (k + 1)th ball, it
may be tossed into an occupied bin, or an empty bin. If it is tossed into an occupied bin, then
the first k balls must have already occupied m bins, and the probability of such case is m

n pn(k,m).
Otherwise, it is tolled into an empty bin, then the first k balls only occupied (m− 1) bins, and the
probability for this case is

(
1− m−1

n

)
pn(k,m− 1). So we get

pn(k + 1,m) =
m

n
pn(k,m) +

(
1− m− 1

n

)
pn(k,m− 1). (5)

We are interested in the expectation of the number of bins that occupied by k balls. Let Fn(k)
denote the expectation, i.e.,

Fn(k) =
k∑

m=1

m · pn(k,m).

By (5), we have

Fn(k + 1) =
k+1∑
m=1

m · pn(k + 1,m)

=
k+1∑
m=1

m ·
[
m

n
pn(k,m) +

(
1− m− 1

n

)
pn(k,m− 1)

]

=
k+1∑
m=1

[
m2

n
pn(k,m)− (m− 1)2

n
pn(k,m− 1)

]
+

k+1∑
m=1

(
m− m− 1

n

)
pn(k,m− 1)

= 0 +
k∑

m=1

pn(k,m) +
(

1− 1
n

) k∑
m=1

m · pn(k,m)

= 1 +
(

1− 1
n

)
Fn(k).

It is easy to see that for one ball, Fn(1) = 1. Thus

Fn(k) = 1 +
(

1− 1
n

)
+ · · ·+

(
1− 1

n

)k−1

=
1−

(
1− 1

n

)k
1−

(
1− 1

n

) = n− n
(

1− 1
n

)k
.

So for k balls, the expectation of the number of empty bins is

En(k) = n− Fn(k) = n

(
1− 1

n

)k
.

Especially, for n balls, the expectation is n
(
1− 1

n

)n, which approaches n/e in the limit of large n,
since we have

lim
n→+∞

(
1− 1

n

)n
= e−1.

3

CS 138b Computer Algorithm
Homework #11

Ling Li, ling@cs.caltech.edu
February 2, 2001

11.4 NP ⊆ BPP? NP = RP?

Assume NP ⊆ BPP. For any language L ∈ NP, the corresponding poly-time verification proce-
dure V accepts the pair (x, y) for at least one “witness” y, if x ∈ L. Thus for any x, we can define
a language

Lx = {y′ : y′ is a prefix of y and V accepts (x, y)}.

Thus Lx ∈ NP, since if y′ ∈ Lx, then the corresponding y is such a “witness”. So, by our
assumption, Lx ∈ BPP.

From homework 10.4, we know there exists a PPT A′ for Lx such that for y′ ∈ Lx, P (A′(y′) =
1) ≥ 1 − e−k, and for y′ 6∈ Lx, P (A′(y′) = 1) < e−k, where k = |y′| is the length of the input.
And further we can design another PPT A by running A′ for polynomial times of |x| and using the
majority vote to decide the output, such that the probability of error is less than e−n, where n is
also a polynomial of |x|.

For x ∈ L, since V is poly-time computable, the length of y is bounded by a polynomial n = |x|c.
We want to use A to guess the (at most n) bits of y. At first, we try 0 and 1 as the first bit of y.
That is, we run A(y1 = 0) and A(y1 = 1). If either run gives 1, take the ‘right’ bit (for which A
returns 1) as y1 and we can continue to guess y2. If both runs give 0, we then check whether we
have already obtained the whole y, by running the verification procedure V on the obtained bits
of y. Of course, when guessing y1 we have no obtained bits of y and V will definitely reject such
input. However, this is useful when the other bits of y is under guessing. If the pair of x and the
obtained bits of y is accepted, then x is accepted as x ∈ L. Otherwise reject x as x 6∈ L. This
procedure continues until x is rejected or accepted or yn+1 is reached (thus we reject x).

For x ∈ L, the above procedure runs in poly-time of |x|. And the probability that it declares x ∈ L
is at least

(1− e−n)n > 1− ne−n > 1
2
.

For x 6∈ L, since we can not find a y that can be accepted by V , x will definitely be rejected by our
procedure. Thus L ∈ RP, and NP ⊆ RP.

We have already known that RP ⊆ NP. Thus from assuming NP ⊆ BPP we get NP = RP.

4

