
CS 138b Computer Algorithm
Homework #10

Ling Li, ling@cs.caltech.edu
January 26, 2001

10.1 Neither negligible nor nonnegligible?

A function ν : N → R≥0 is negligible if ∀c ∈ R, lim sup ν(n)/nc = 0. Thus, ν is not negligible if
∃c ∈ R, there are infinity number of n such that ν(n)/nc ≥ 1.

A function ν : N → R≥0 is nonnegligible if ∃c ∈ R, lim inf ν(n)/nc > 0. Thus, ν is not nonnegligible
if ∀c ∈ R, there are infinity number of n such that ν(n)/nc < 1. (I should say: ν is not nonnegligible
if ∀c ∈ R and ∀r > 0, there are infinity number of n such that ν(n)/nc < r. However, if for r < 1
and (c+ ln r), there are infinity number of n such that ν(n)/nc+ln r < 1, we have for such n ≥ 3,

ν(n)/nc < nln r < eln r = r,

i.e., there are infinity number of n such that ν(n)/nc < r. So, since we consider ‘∀c’, we can just
consider this simpler situation that there are infinity number of n such that ν(n)/nc < 1.)

Define d·ef : R→ N as the ceiling of factorial:

dxef = k!, if (k − 1)! < x ≤ k!.

For example, d6ef = 6 since 6 = 3!; d6.1ef = 24 since 3! < 6.1 ≤ 4! = 24. Easy to see that d·ef is
monotonic non-decreasing.

Consider ν(n) = 2−dlog2(n+1)ef . For n = 2k! − 1 and k ≥ 2, ν(n) = 2−k!. Thus for c = −2,
ν(n)/nc = 2−k!(2k! − 1)2 > 2k! − 2 > 1. So, there are infinity number of n (= 2k! − 1 for k ≥ 2)
such that ν(n)/nc ≥ 1. So ν(n) is not negligible.

For any c ∈ R, let k0 = max {d−ce , 1}. For any integer k ≥ k0 and n = 2k!, dlog2(n+ 1)ef =
(k + 1)!, thus ν(n) = 2−(k+1)! = n−k−1. So from k ≥ k0 ≥ −c and n = 2k! ≥ 2, we know

ν(n)/nc ≤ n−k−1 · nk = n−1 < 1.

Thus ν(n) is not nonnegligible.

ν(n) is monotonic non-increasing, since log(·) and d·ef are both monotonic non-decreasing, and 2−x

is monotonic decreasing of x. So ν(n) = 2−dlog2(n+1)ef is a monotonic non-increasing function that
is neither negligible nor nonnegligible.

1



CS 138b Computer Algorithm
Homework #10

Ling Li, ling@cs.caltech.edu
January 26, 2001

10.2 Alternate definition of SOF

For any f : {0, 1}∗ → {0, 1}∗ in SOF′, there exist positive constants c1 and c2 such that |x|c1 ≤
|f(x)| ≤ |x|c2 . Thus |f(x)|1/c2 ≤ |x| ≤ |f(x)|1/c1 . For any PPT A, we can design:

PPT Algorithm A′: For input f(x), compute kmin =
⌈
|f(x)|1/c2

⌉
and kmax =

⌊
|f(x)|1/c1

⌋
. For

integer k′ ∈U [kmin, kmax] (that is, k′ is randomly selected from within [kmin, kmax] with
uniform probability), return A(1k

′
, f(x)).

Since f ∈ SOF′, there is a negligible function ν such that

P (f(A′(f(x))) = f(x) : x ∈U {0, 1}k) ≤ ν(k).

Since kmin ≥ |f(x)|1/c2 ≥ |x|c1/c2 , and kmax ≤ |f(x)|1/c1 ≤ |x|c2/c1 , the number of integers within
[kmin, kmax] is at most

⌈
|x|c2/c1 − |x|c1/c2 + 1

⌉
, and |x| is one of such integers. Since in algorithm

A′, k′ is selected with uniform distribution from all integers between kmin and kmax, we have

P (f(A(1k, f(x))) = f(x) : x ∈U {0, 1}k) ≤
⌈
kc2/c1 − kc1/c2 + 1

⌉
ν(k).

ν(k) is a negligible function, so is
⌈
kc2/c1 − kc1/c2 + 1

⌉
ν(k). Thus with the property (a) of an SOF′

function, we know that f ∈ SOF. Thus SOF′ ⊆ SOF.

For any f ∈ SOF, we can modify it to f ′(x) = (1|x|, 0, f(x)).∗ That is, f ′(x) first outputs 1|x|, then
one 0, then f(x). Since there is a PPT F such that F (x) = f(x), then obviously there is a PPT
F ′(x) = f ′(x), since outputting 1|x| and one 0 is of polynomial complex. And there is a positive
constant c ≥ 2 such that |f(x)| ≤ |x|c for |x| ≥ 2. Thus†

|x|1 <
∣∣f ′(x)

∣∣ ≤ |x|c + |x|+ 1 < |x|c+1 .

Since the first 0 in f ′(x)’s output indicates the length of the prefix 1’s, we have f ′(x) = f ′(y) ⇒
(|x| = |y|) ∧ (f(x) = f(y)). Thus for every PPT A,

P (f ′(A(f ′(x))) = f ′(x) : x ∈U {0, 1}k) ≤ P (f(A(1k, 0, f(x))) = f(x) : x ∈U {0, 1}k).

Using similar techniques used above, we can design a PPT A′ such that A′ first randomly inserts
a 0 into the input (the 0 should be inserted after consecutive 1’s; no other 0 is before the inserted
one) and then calls A to get the output. The number of positions that one 0 can be inserted is less
than |f ′(x)|. Thus

P (f(A(1k, 0, f(x))) = f(x) : x ∈U {0, 1}k) ≤ |x|c+1 P (f(A′(1k, f(x))) = f(x) : x ∈U {0, 1}k).

For A′, since f ∈ SOF, we know there is a negligible function ν such that

P (f(A′(1k, f(x))) = f(x) : x ∈U {0, 1}k) ≤ ν(k).

Thus we get
P (f ′(A(f ′(x))) = f ′(x) : x ∈U {0, 1}k) ≤ |x|c+1 ν(k),

where |x|c+1 ν(k) is also a negligible function. So f ′(x) ∈ SOF′.

∗Since when |x| = 1 ⇒ |x|c = 1 for any c, we can specify f ′(x) = 0 for |x| = 1. This will not destroy the whole
proof since SOF or SOF′ only pay attention to input with sufficient large length.
†When |x| ≥ 2, c ≥ 2, we have (|x|c − 1)(|x| − 1) > 2, i.e., |x|c + |x|+ 1 < |x|c+1.

2



CS 138b Computer Algorithm
Homework #10

Ling Li, ling@cs.caltech.edu
January 26, 2001

10.3 Length-preserving SOF

Assume function f ∈ SOF. We want to design a length-preserving strong one way function f ′ from
f . First, give three functions and some of their properties:

Append: C(x, k), where x ∈ {0, 1}∗ and k > |x|, appends x with one 0 and 1k−|x|−1. If k = |x|+ 1
then no 1’s appended. For example, C(10, 4) = 1001 and C(01, 7) = 0101111. Thus |C(x, k)| =
k. Note that k > |x| for C(x, k). That is, C(x, k) always appends some ‘signature’ x. Thus
we have (similar to Problem 10.2) C(x, k) = C(x′, k′)⇔ (x = x′) ∧ (k = k′).

AppendR: CR(x, k), where x ∈ {0, 1}∗ and k > |x|, append random string of length (k − |x|) to
x.

Prefix: E(x, k), where x ∈ {0, 1}∗ and k ∈ N , returns the first k symbols of x. For example,
E(1001, 2) = 10. It is easy to see |E(x, k)| = k, and E(CR(x, k′), |x|) = x.

Since f ∈ SOF, there exist a constant c ∈ N such that |f(x)| < |x|c. For any x with length
nc, we define f ′(x) = C(f(E(x, n)), nc). Obviously, f ′ is length-preserving, and can be calculated
in polynomial time. From the properties of append function C, f ′(x) = f ′(x′) ⇔ |x| = |x′| ∧
f(E(x, n)) = f(E(x′, n)), where n = |x|1/c.

For any PPT algorithm A′ (that can invert f ′), we can design another PPT algorithm (to invert
f) A[1k, f(x)] = E(A′[1k

c
, C(f(x), kc)], k), where k = |x|. We have

P
(
f(A[1k, f(x)]) = f(x)

)
= P

(
f(E(A′[1k

c
, C(f(x), kc)], k)) = f(E(CR(x, kc), k)

)
= P

(
f ′(A′[1k

c
, C(f(x), kc)]) = f ′(CR(x, kc))

)
= P

(
f ′(A′[1k

c
, f ′(CR(x, kc))]) = f ′(CR(x, kc))

)
.

The randomness of CR assures that

P
(
f(A[1k, f(x)]) = f(x) : x ∈U {0, 1}k

)
= P

(
f ′(A′[1k

c
, f ′(x)]) = f ′(x) : x ∈U {0, 1}k

c
)
.

Thus, since f ∈ SOF, there exists a negligible function ν such that

P
(
f(A[1k, f(x)]) = f(x) : x ∈U {0, 1}k

)
≤ ν(k).

Then we have
P
(
f ′(A′[1k

c
, f ′(x)]) = f ′(x) : x ∈U {0, 1}k

c
)
≤ ν(kc),

and ν(kc) is also a negligible function of k. So f ′ is a length-preserving strong one-way function.

3



CS 138b Computer Algorithm
Homework #10

Ling Li, ling@cs.caltech.edu
January 26, 2001

10.4 BPP

(a) For such PPT A, we can design a PPT A′(x) as:

Let K = 18 |x|2b · t, where t = max
{

4 2b

2b−1
, 1
}

. Run A on x for K times. The

number of times that A(x) = 1 is S =
∑K

i=1Ai(x) where Ai(x) is the output of the
i-th run of A. If S ≥ K

3 then A′(x) = 1 otherwise A′(x) = 0.

For x ∈ L, P (A(x) = 1) ≥ 1+|x|−b
3 . Thus from the Chernoff bound,

P (A′(x) = 1) = 1− P
(
S <

K

3

)
≥ 1− P

(
S < K · (P (A(x) = 1)− |x|

−b

3
)

)

≥ 1− P

(
|S −K · P (A(x) = 1)| > |x|

−b

3
K

)

≥ 1− 2e−
|x|−2b

18
K = 1− 2e−t.

For |x| ≥ 2, we have 4
1−|x|−b

= 4(1 + 1
|x|b−1

) ≤ 4(1 + 1
2b−1

) ≤ t. And for t > 1, te−t is

a decreasing function since d(te−t)
dt = (1 − t)e−t < 0. Thus te−t ≤ e−1 < 1. So we have

1−|x|−b
4 ≥ 1

t > e−t, or 1 − 2e−t > 1+|x|−b
2 . So for x ∈ L, P (A′(x) = 1) ≥ 1+|x|−b

2 . (Note: we
can not achieve so high a probability when |x| = 1, since P (A(x) = 1) ≥ 2

3 can not assure
P (A′(x) = 1) = 1.)

For x 6∈ L, P (A(x) = 1) ≤ 1−|x|−b
3 . Thus from the Chernoff bound,

P (A′(x) = 1) = P

(
S ≥ K

3

)
≤ P

(
S ≥ K · (P (A(x) = 1) +

|x|−b

3
)

)

≤ P

(
|S −K · P (A(x) = 1)| ≥ |x|

−b

3
K

)

≤ 2e−
|x|−2b

18
K = 2e−t.

Since we have proven that for |x| ≥ 2, 1− 2e−t > 1+|x|−b
2 , we have for x 6∈ L, P (A′(x) = 1) ≤

1−|x|−b
2 . (Note: For |x| = 1, this also holds since P (A(x) = 1) ≤ 0.)

Since A is poly-time computable and K is a polynomial of |x|, we have A′ is also a PPT.

(b) For such PPT A, we can design a PPT A′(x) as:

Let K = 16 |x|2b. Run A on x for K times. The number of times that A(x) = 1
is S =

∑K
i=1Ai(x) where Ai(x) is the output of the i-th run of A. If S ≥ K

2 then
A′(x) = 1 otherwise A′(x) = 0.

4



CS 138b Computer Algorithm
Homework #10

Ling Li, ling@cs.caltech.edu
January 26, 2001

For x ∈ L, P (A(x) = 1) ≥ 1+|x|−b
2 . Thus from the Chernoff bound,

P (A′(x) = 1) = 1− P
(
S <

K

2

)
≥ 1− P

(
S < K · (P (A(x) = 1)− |x|

−b

2
)

)

≥ 1− P

(
|S −K · P (A(x) = 1)| > |x|

−b

2
K

)

≥ 1− 2e−
|x|−2b

8
K = 1− 2e−2 >

2
3
.

For x 6∈ L, P (A(x) = 1) ≤ 1−|x|−b
2 . Thus from the Chernoff bound,

P (A′(x) = 1) = P

(
S ≥ K

2

)
≤ P

(
S ≥ K · (P (A(x) = 1) +

|x|−b

2
)

)

≤ P

(
|S −K · P (A(x) = 1)| ≥ |x|

−b

2
K

)

≤ 2e−
|x|−2b

8
K = 2e−2 <

1
3
.

Since A is poly-time computable and K is a polynomial of |x|, we have A′ is also a PPT. So
L ∈ BPP.

(c) If L ∈ BPP, then there exists a PPT algorithm A such that for x ∈ L, P (A(x) = 1) ≥ 2/3 and
for x 6∈ L, P (A(x) = 1) ≤ 1/3. Thus we can design a PPT A′(x) as:

Let K = 72(|x|+ 1). Run A on x for K times. The number of times that A(x) = 1
is S =

∑K
i=1Ai(x) where Ai(x) is the output of the i-th run of A. If S ≥ K

2 then
A′(x) = 1 otherwise A′(x) = 0.

For x ∈ L, P (A(x) = 1) ≥ 2
3 . Thus from the Chernoff bound,

P (A′(x) = 0) = P

(
S <

K

2

)
≤ P

(
S < K · (P (A(x) = 1)− 1

6
)
)

≤ P

(
|S −K · P (A(x) = 1)| > K

6

)
≤ 2e−K/72 =

2
e
e−|x| < e−|x|.

For x 6∈ L, P (A(x) = 1) ≤ 1
3 . Thus from the Chernoff bound,

P (A′(x) = 1) = P (S ≥ K

2
) ≤ P

(
S ≥ K · (P (A(x) = 1) +

1
6

)
)

≤ P

(
|S −K · P (A(x) = 1)| ≥ K

6

)
≤ 2e−K/72 < e−|x|.

Since A is poly-time computable and K is a polynomial of |x|, we have A′ is also a PPT, and
the probability of A′ making an error is at most e−|x|.

5



CS 138b Computer Algorithm
Homework #10

Ling Li, ling@cs.caltech.edu
January 26, 2001

10.5 SOP

(a) For f a SOP and π a PPT permutation, π ◦ f is also a PPT permutation, since both f and
π are poly-time computable and are permutations. If π ◦ f is not a SOP, then there exists
a PPT A with not negligible probability such that π ◦ f(A(π ◦ f(x))) = π ◦ f(x). We can
design A′(x) = A(π(x)), which is a PPT since A and π are both PPT. Thus for f(x), we
have π ◦f(A′(f(x))) = π ◦f(x) with not negligible probability. Since π is one-to-one, we have
f(A′(f(x))) = f(x) with not negligible probability, conflicting with that f is a SOF. So π ◦ f
is also a SOP.

(b) (Collaborate with Adam Granicz, Ke Yang) Given a strong one way function f , we can
design

f1(x) = (0|f(x)|, f(x)),

and

f2(x) = f(E(x,
⌈
|x|
2

⌉
)),

where E is the prefix function defined in Problem 10.3. It is obviously f1 and f2 are both
one-way functions. However, f2 ◦ f1 is a constant, i.e., f2(f1(x)) = f(0|f(x)|) is not a one-way
function.

6



CS 138b Computer Algorithm
Homework #10

Ling Li, ling@cs.caltech.edu
January 26, 2001

10.6 Poly-time distinguishable

If Q and R are poly-time distinguishable, there exists a PPT test T such that

|Px←Qn(T (x) = 1)− Px←Rn(T (x) = 1)|

is a nonnegligible function. Let P (n)
Q denote Px←Qn(T (x) = 1) and P

(n)
R denote Px←Rn(T (x) = 1)

for convenience. Thus ∃c > 0, ∃n0 ∈ N such that for n ≥ n0,
∣∣∣P (n)
Q − P (n)

R

∣∣∣ > n−c.

Design a statistical test T ′: 1. T ′ has access to random samples from Q and R; 2. T ′ calculates

Sq =
K∑
i=1

T (qi), Sr =
K∑
i=1

T (ri),

and returns T (x) if Sq ≥ Sr, otherwise returns 1− T (x). Here qi and ri are samples from Qn and
Rn respectively, and K = 12n3c.

• If for n ≥ n0, P (n)
Q − P (n)

R ≥ 0, then P
(n)
Q − P (n)

R > n−c. Thus from the Chernoff bound,

P (Sq < Sr) ≤ P

(
Sq < K · (P (n)

Q − 1
2
n−c) ∨ Sr > K · (P (n)

R +
1
2
n−c)

)
≤ P

(
Sq < K · (P (n)

Q − 1
2
n−c)

)
+ P

(
Sr > K · (P (n)

R +
1
2
n−c)

)
≤ P

(∣∣∣Sq −K · P (n)
Q

∣∣∣ > K

2
n−c

)
+ P

(∣∣∣Sr −K · P (n)
R

∣∣∣ > K

2
n−c

)
≤ 4e−

n−2c

4
K = 4e−3nc <

1
4
n−c.

The last inequality is due to c > 0⇒ 3nc > 3⇒ 16nce−3nc < 16e−3 < 1. So

Px←Qn(T ′(x) = 1) ≥ P (Sq ≥ Sr) · P (n)
Q ≥

(
1− 1

4
n−c

)
P

(n)
Q ≥ P (n)

Q − 1
4
n−c,

and

Px←Rn(T ′(x) = 1) = P (Sq ≥ Sr) · P (n)
R + P (Sq < Sr) · (1− P (n)

R ) ≤ P (n)
R +

1
4
n−c.

Thus
Px←Qn(T ′(x) = 1)− Px←Rn(T ′(x) = 1) ≥ P (n)

Q − P (n)
R − 1

2
n−c ≥ 1

2
n−c.

• If for n ≥ n0, P (n)
Q − P (n)

R < 0, then P
(n)
R − P (n)

Q > n−c. Thus from the Chernoff bound,

P (Sq ≥ Sr) ≤ P

(
Sq > K · (P (n)

Q +
1
2
n−c) ∨ Sr ≤ K · (P (n)

R − 1
2
n−c)

)
≤ P

(
Sq > K · (P (n)

Q +
1
2
n−c)

)
+ P

(
Sr ≤ K · (P (n)

R − 1
2
n−c)

)
≤ P

(∣∣∣Sq −K · P (n)
Q

∣∣∣ > K

2
n−c

)
+ P

(∣∣∣Sr −K · P (n)
R

∣∣∣ ≥ K

2
n−c

)
≤ 4e−

n−2c

4
K = 4e−3nc <

1
4
n−c.

7



CS 138b Computer Algorithm
Homework #10

Ling Li, ling@cs.caltech.edu
January 26, 2001

So

Px←Qn(T ′(x) = 1) ≥ P (Sq < Sr) · (1− P (n)
Q ) ≥

(
1− 1

4
n−c

)
(1− P (n)

Q ) ≥ 1− P (n)
Q − 1

4
n−c,

and

Px←Rn(T ′(x) = 1) = P (Sq < Sr) · (1− P (n)
R ) + P (Sq ≥ Sr) · P (n)

R ≤ 1− P (n)
R +

1
4
n−c.

Thus
Px←Qn(T ′(x) = 1)− Px←Rn(T ′(x) = 1) ≥ P (n)

R − P (n)
Q − 1

2
n−c ≥ 1

2
n−c.

Thus, for n ≥ n0, we always have Px←Qn(T ′(x) = 1) − Px←Rn(T ′(x) = 1) ≥ 1
2n
−c, positive and

nonnegligible.

8


