10.1 Neither negligible nor nonnegligible?

A function $\nu: \mathcal{N} \rightarrow \mathcal{R}_{\geq 0}$ is negligible if $\forall c \in \mathcal{R}$, $\lim \sup \nu(n) / n^{c}=0$. Thus, ν is not negligible if $\exists c \in \mathcal{R}$, there are infinity number of n such that $\nu(n) / n^{c} \geq 1$.

A function $\nu: \mathcal{N} \rightarrow \mathcal{R}_{\geq 0}$ is nonnegligible if $\exists c \in \mathcal{R}, \lim \inf \nu(n) / n^{c}>0$. Thus, ν is not nonnegligible if $\forall c \in \mathcal{R}$, there are infinity number of n such that $\nu(n) / n^{c}<1$. (I should say: ν is not nonnegligible if $\forall c \in \mathcal{R}$ and $\forall r>0$, there are infinity number of n such that $\nu(n) / n^{c}<r$. However, if for $r<1$ and $(c+\ln r)$, there are infinity number of n such that $\nu(n) / n^{c+\ln r}<1$, we have for such $n \geq 3$,

$$
\nu(n) / n^{c}<n^{\ln r}<e^{\ln r}=r,
$$

i.e., there are infinity number of n such that $\nu(n) / n^{c}<r$. So, since we consider ' $\forall c$ ', we can just consider this simpler situation that there are infinity number of n such that $\nu(n) / n^{c}<1$.)
Define $\lceil\cdot\rceil_{f}: \mathcal{R} \rightarrow \mathcal{N}$ as the ceiling of factorial:

$$
\lceil x\rceil_{f}=k!\text {, if }(k-1)!<x \leq k!.
$$

For example, $\lceil 6\rceil_{f}=6$ since $6=3!;\lceil 6.1\rceil_{f}=24$ since $3!<6.1 \leq 4!=24$. Easy to see that $\lceil\cdot\rceil_{f}$ is monotonic non-decreasing.
Consider $\nu(n)=2^{-\left\lceil\log _{2}(n+1)\right]_{f}}$. For $n=2^{k!}-1$ and $k \geq 2, \nu(n)=2^{-k!}$. Thus for $c=-2$, $\nu(n) / n^{c}=2^{-k!}\left(2^{k!}-1\right)^{2}>2^{k!}-2>1$. So, there are infinity number of $n\left(=2^{k!}-1\right.$ for $\left.k \geq 2\right)$ such that $\nu(n) / n^{c} \geq 1$. So $\nu(n)$ is not negligible.
For any $c \in \mathcal{R}$, let $k_{0}=\max \{\lceil-c\rceil, 1\}$. For any integer $k \geq k_{0}$ and $n=2^{k!},\left\lceil\log _{2}(n+1)\right\rceil_{f}=$ $(k+1)!$, thus $\nu(n)=2^{-(k+1)!}=n^{-k-1}$. So from $k \geq k_{0} \geq-c$ and $n=2^{k!} \geq 2$, we know

$$
\nu(n) / n^{c} \leq n^{-k-1} \cdot n^{k}=n^{-1}<1 .
$$

Thus $\nu(n)$ is not nonnegligible.
$\nu(n)$ is monotonic non-increasing, since $\log (\cdot)$ and $\lceil\cdot\rceil_{f}$ are both monotonic non-decreasing, and 2^{-x} is monotonic decreasing of x. So $\nu(n)=2^{-\left\lceil\log _{2}(n+1)\right\rceil_{f}}$ is a monotonic non-increasing function that is neither negligible nor nonnegligible.

10.2 Alternate definition of SOF

For any $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ in SOF $^{\prime}$, there exist positive constants c_{1} and c_{2} such that $|x|^{c_{1}} \leq$ $|f(x)| \leq|x|^{c_{2}}$. Thus $|f(x)|^{1 / c_{2}} \leq|x| \leq|f(x)|^{1 / c_{1}}$. For any PPT A, we can design:

PPT Algorithm A^{\prime} : For input $f(x)$, compute $k_{\min }=\left\lceil|f(x)|^{1 / c_{2}}\right\rceil$ and $k_{\max }=\left\lfloor|f(x)|^{1 / c_{1}}\right\rfloor$. For integer $k^{\prime} \in_{U}\left[k_{\min }, k_{\max }\right]$ (that is, k^{\prime} is randomly selected from within $\left[k_{\min }, k_{\max }\right]$ with uniform probability), return $A\left(1^{k^{\prime}}, f(x)\right)$.

Since $f \in \mathrm{SOF}^{\prime}$, there is a negligible function ν such that

$$
P\left(f\left(A^{\prime}(f(x))\right)=f(x): x \in_{U}\{0,1\}^{k}\right) \leq \nu(k) .
$$

Since $k_{\text {min }} \geq|f(x)|^{1 / c_{2}} \geq|x|^{c_{1} / c_{2}}$, and $k_{\max } \leq|f(x)|^{1 / c_{1}} \leq|x|^{c_{2} / c_{1}}$, the number of integers within $\left[k_{\min }, k_{\max }\right]$ is at most $\left\lceil|x|^{c_{2} / c_{1}}-|x|^{c_{1} / c_{2}}+1\right\rceil$, and $|x|$ is one of such integers. Since in algorithm A^{\prime}, k^{\prime} is selected with uniform distribution from all integers between $k_{\min }$ and $k_{\max }$, we have

$$
P\left(f\left(A\left(1^{k}, f(x)\right)\right)=f(x): x \in_{U}\{0,1\}^{k}\right) \leq\left\lceil k^{c_{2} / c_{1}}-k^{c_{1} / c_{2}}+1\right\rceil \nu(k) .
$$

$\nu(k)$ is a negligible function, so is $\left\lceil k^{c_{2} / c_{1}}-k^{c_{1} / c_{2}}+1\right\rceil \nu(k)$. Thus with the property (a) of an SOF^{\prime} function, we know that $f \in \mathrm{SOF}$. Thus $\mathrm{SOF}^{\prime} \subseteq \mathrm{SOF}$.
For any $f \in$ SOF, we can modify it to $f^{\prime}(x)=\left(1^{|x|}, 0, f(x)\right)$.* That is, $f^{\prime}(\mathrm{x})$ first outputs $1^{|x|}$, then one 0 , then $f(x)$. Since there is a PPT F such that $F(x)=f(x)$, then obviously there is a PPT $F^{\prime}(x)=f^{\prime}(x)$, since outputting $1^{|x|}$ and one 0 is of polynomial complex. And there is a positive constant $c \geq 2$ such that $|f(x)| \leq|x|^{c}$ for $|x| \geq 2$. Thus ${ }^{\dagger}$

$$
|x|^{1}<\left|f^{\prime}(x)\right| \leq|x|^{c}+|x|+1<|x|^{c+1} .
$$

Since the first 0 in $f^{\prime}(x)$'s output indicates the length of the prefix 1's, we have $f^{\prime}(x)=f^{\prime}(y) \Rightarrow$ $(|x|=|y|) \wedge(f(x)=f(y))$. Thus for every PPT A,

$$
P\left(f^{\prime}\left(A\left(f^{\prime}(x)\right)\right)=f^{\prime}(x): x \in_{U}\{0,1\}^{k}\right) \leq P\left(f\left(A\left(1^{k}, 0, f(x)\right)\right)=f(x): x \in_{U}\{0,1\}^{k}\right)
$$

Using similar techniques used above, we can design a PPT A^{\prime} such that A^{\prime} first randomly inserts a 0 into the input (the 0 should be inserted after consecutive 1's; no other 0 is before the inserted one) and then calls A to get the output. The number of positions that one 0 can be inserted is less than $\left|f^{\prime}(x)\right|$. Thus

$$
P\left(f\left(A\left(1^{k}, 0, f(x)\right)\right)=f(x): x \in_{U}\{0,1\}^{k}\right) \leq|x|^{c+1} P\left(f\left(A^{\prime}\left(1^{k}, f(x)\right)\right)=f(x): x \in_{U}\{0,1\}^{k}\right) .
$$

For A^{\prime}, since $f \in \mathrm{SOF}$, we know there is a negligible function ν such that

$$
P\left(f\left(A^{\prime}\left(1^{k}, f(x)\right)\right)=f(x): x \in_{U}\{0,1\}^{k}\right) \leq \nu(k)
$$

Thus we get

$$
P\left(f^{\prime}\left(A\left(f^{\prime}(x)\right)\right)=f^{\prime}(x): x \in_{U}\{0,1\}^{k}\right) \leq|x|^{c+1} \nu(k),
$$

where $|x|^{c+1} \nu(k)$ is also a negligible function. So $f^{\prime}(x) \in \operatorname{SOF}^{\prime}$.

[^0]
10.3 Length-preserving SOF

Assume function $f \in \operatorname{SOF}$. We want to design a length-preserving strong one way function f^{\prime} from f. First, give three functions and some of their properties:

Append: $\mathcal{C}(x, k)$, where $x \in\{0,1\}^{*}$ and $k>|x|$, appends x with one 0 and $1^{k-|x|-1}$. If $k=|x|+1$ then no 1 's appended. For example, $\mathcal{C}(10,4)=1001$ and $\mathcal{C}(01,7)=0101111$. Thus $|\mathcal{C}(x, k)|=$ k. Note that $k>|x|$ for $\mathcal{C}(x, k)$. That is, $\mathcal{C}(x, k)$ always appends some 'signature' x. Thus we have (similar to Problem 10.2) $\mathcal{C}(x, k)=\mathcal{C}\left(x^{\prime}, k^{\prime}\right) \Leftrightarrow\left(x=x^{\prime}\right) \wedge\left(k=k^{\prime}\right)$.

AppendR: $\mathcal{C}_{R}(x, k)$, where $x \in\{0,1\}^{*}$ and $k>|x|$, append random string of length $(k-|x|)$ to x.

Prefix: $\mathcal{E}(x, k)$, where $x \in\{0,1\}^{*}$ and $k \in \mathcal{N}$, returns the first k symbols of x. For example, $\mathcal{E}(1001,2)=10$. It is easy to see $|\mathcal{E}(x, k)|=k$, and $\mathcal{E}\left(\mathcal{C}_{R}\left(x, k^{\prime}\right),|x|\right)=x$.

Since $f \in \mathrm{SOF}$, there exist a constant $c \in \mathcal{N}$ such that $|f(x)|<|x|^{c}$. For any x with length n^{c}, we define $f^{\prime}(x)=\mathcal{C}\left(f(\mathcal{E}(x, n)), n^{c}\right)$. Obviously, f^{\prime} is length-preserving, and can be calculated in polynomial time. From the properties of append function \mathcal{C}, $f^{\prime}(x)=f^{\prime}\left(x^{\prime}\right) \Leftrightarrow|x|=\left|x^{\prime}\right| \wedge$ $f(\mathcal{E}(x, n))=f\left(\mathcal{E}\left(x^{\prime}, n\right)\right)$, where $n=|x|^{1 / c}$.

For any PPT algorithm A^{\prime} (that can invert f^{\prime}), we can design another PPT algorithm (to invert f) $A\left[1^{k}, f(x)\right]=\mathcal{E}\left(A^{\prime}\left[1^{k^{c}}, \mathcal{C}\left(f(x), k^{c}\right)\right], k\right)$, where $k=|x|$. We have

$$
\begin{aligned}
P\left(f\left(A\left[1^{k}, f(x)\right]\right)=f(x)\right) & =P\left(f\left(\mathcal{E}\left(A^{\prime}\left[1^{k^{c}}, \mathcal{C}\left(f(x), k^{c}\right)\right], k\right)\right)=f\left(\mathcal{E}\left(\mathcal{C}_{R}\left(x, k^{c}\right), k\right)\right)\right. \\
& =P\left(f^{\prime}\left(A^{\prime}\left[1^{k^{c}}, \mathcal{C}\left(f(x), k^{c}\right)\right]\right)=f^{\prime}\left(\mathcal{C}_{R}\left(x, k^{c}\right)\right)\right) \\
& =P\left(f^{\prime}\left(A^{\prime}\left[1^{k^{c}}, f^{\prime}\left(\mathcal{C}_{R}\left(x, k^{c}\right)\right)\right]\right)=f^{\prime}\left(\mathcal{C}_{R}\left(x, k^{c}\right)\right)\right) .
\end{aligned}
$$

The randomness of \mathcal{C}_{R} assures that

$$
P\left(f\left(A\left[1^{k}, f(x)\right]\right)=f(x): x \in_{U}\{0,1\}^{k}\right)=P\left(f^{\prime}\left(A^{\prime}\left[1^{k^{c}}, f^{\prime}(x)\right]\right)=f^{\prime}(x): x \in_{U}\{0,1\}^{k^{c}}\right) .
$$

Thus, since $f \in$ SOF, there exists a negligible function ν such that

$$
P\left(f\left(A\left[1^{k}, f(x)\right]\right)=f(x): x \in_{U}\{0,1\}^{k}\right) \leq \nu(k)
$$

Then we have

$$
P\left(f^{\prime}\left(A^{\prime}\left[1^{k^{c}}, f^{\prime}(x)\right]\right)=f^{\prime}(x): x \in_{U}\{0,1\}^{k^{c}}\right) \leq \nu\left(k^{c}\right)
$$

and $\nu\left(k^{c}\right)$ is also a negligible function of k. So f^{\prime} is a length-preserving strong one-way function.

10.4 BPP

(a) For such $\operatorname{PPT} A$, we can design a $\operatorname{PPT} A^{\prime}(x)$ as:

Let $K=18|x|^{2 b} \cdot t$, where $t=\max \left\{4 \frac{2^{b}}{2^{b}-1}, 1\right\}$. Run A on x for K times. The number of times that $A(x)=1$ is $S=\sum_{i=1}^{K} A_{i}(x)$ where $A_{i}(x)$ is the output of the i-th run of A. If $S \geq \frac{K}{3}$ then $A^{\prime}(x)=1$ otherwise $A^{\prime}(x)=0$.

For $x \in L, P(A(x)=1) \geq \frac{1+|x|^{-b}}{3}$. Thus from the Chernoff bound,

$$
\begin{aligned}
P\left(A^{\prime}(x)=1\right)=1-P\left(S<\frac{K}{3}\right) & \geq 1-P\left(S<K \cdot\left(P(A(x)=1)-\frac{|x|^{-b}}{3}\right)\right) \\
& \geq 1-P\left(|S-K \cdot P(A(x)=1)|>\frac{|x|^{-b}}{3} K\right) \\
& \geq 1-2 e^{-\frac{|x|^{-2 b}}{18} K}=1-2 e^{-t} .
\end{aligned}
$$

For $|x| \geq 2$, we have $\frac{4}{1-|x|^{-b}}=4\left(1+\frac{1}{|x|^{b}-1}\right) \leq 4\left(1+\frac{1}{2^{b}-1}\right) \leq t$. And for $t>1$, $t e^{-t}$ is a decreasing function since $\frac{d\left(t e^{-t}\right)}{d t}=(1-t) e^{-t}<0$. Thus $t e^{-t} \leq e^{-1}<1$. So we have $\frac{1-|x|^{-b}}{4} \geq \frac{1}{t}>e^{-t}$, or $1-2 e^{-t}>\frac{1+|x|^{-b}}{2}$. So for $x \in L, P\left(A^{\prime}(x)=1\right) \geq \frac{1+|x|^{-b}}{2}$. (Note: we can not achieve so high a probability when $|x|=1$, since $P(A(x)=1) \geq \frac{2}{3}$ can not assure $P\left(A^{\prime}(x)=1\right)=1$.)
For $x \notin L, P(A(x)=1) \leq \frac{1-|x|^{-b}}{3}$. Thus from the Chernoff bound,

$$
\begin{aligned}
P\left(A^{\prime}(x)=1\right)=P\left(S \geq \frac{K}{3}\right) & \leq P\left(S \geq K \cdot\left(P(A(x)=1)+\frac{|x|^{-b}}{3}\right)\right) \\
& \leq P\left(|S-K \cdot P(A(x)=1)| \geq \frac{|x|^{-b}}{3} K\right) \\
& \leq 2 e^{-\frac{|x|^{-2 b}}{18} K}=2 e^{-t} .
\end{aligned}
$$

Since we have proven that for $|x| \geq 2,1-2 e^{-t}>\frac{1+|x|^{-b}}{2}$, we have for $x \notin L, P\left(A^{\prime}(x)=1\right) \leq$ $\frac{1-|x|^{-b}}{2}$. (Note: For $|x|=1$, this also holds since $P(A(x)=1) \leq 0$.)
Since A is poly-time computable and K is a polynomial of $|x|$, we have A^{\prime} is also a PPT.
(b) For such PPT A, we can design a $\operatorname{PPT} A^{\prime}(x)$ as:

Let $K=16|x|^{2 b}$. Run A on x for K times. The number of times that $A(x)=1$ is $S=\sum_{i=1}^{K} A_{i}(x)$ where $A_{i}(x)$ is the output of the i-th run of A. If $S \geq \frac{K}{2}$ then $A^{\prime}(x)=1$ otherwise $A^{\prime}(x)=0$.

For $x \in L, P(A(x)=1) \geq \frac{1+|x|^{-b}}{2}$. Thus from the Chernoff bound,

$$
\begin{aligned}
P\left(A^{\prime}(x)=1\right)=1-P\left(S<\frac{K}{2}\right) & \geq 1-P\left(S<K \cdot\left(P(A(x)=1)-\frac{|x|^{-b}}{2}\right)\right) \\
& \geq 1-P\left(|S-K \cdot P(A(x)=1)|>\frac{|x|^{-b}}{2} K\right) \\
& \geq 1-2 e^{-\frac{|x|^{-2 b}}{8} K}=1-2 e^{-2}>\frac{2}{3}
\end{aligned}
$$

For $x \notin L, P(A(x)=1) \leq \frac{1-|x|^{-b}}{2}$. Thus from the Chernoff bound,

$$
\begin{aligned}
P\left(A^{\prime}(x)=1\right)=P\left(S \geq \frac{K}{2}\right) & \leq P\left(S \geq K \cdot\left(P(A(x)=1)+\frac{|x|^{-b}}{2}\right)\right) \\
& \leq P\left(|S-K \cdot P(A(x)=1)| \geq \frac{|x|^{-b}}{2} K\right) \\
& \leq 2 e^{-\frac{|x|^{-2 b}}{8} K}=2 e^{-2}<\frac{1}{3}
\end{aligned}
$$

Since A is poly-time computable and K is a polynomial of $|x|$, we have A^{\prime} is also a PPT. So $L \in \mathrm{BPP}$.
(c) If $L \in \mathrm{BPP}$, then there exists a PPT algorithm A such that for $x \in L, P(A(x)=1) \geq 2 / 3$ and for $x \notin L, P(A(x)=1) \leq 1 / 3$. Thus we can design a PPT $A^{\prime}(x)$ as:

Let $K=72(|x|+1)$. Run A on x for K times. The number of times that $A(x)=1$ is $S=\sum_{i=1}^{K} A_{i}(x)$ where $A_{i}(x)$ is the output of the i-th run of A. If $S \geq \frac{K}{2}$ then $A^{\prime}(x)=1$ otherwise $A^{\prime}(x)=0$.

For $x \in L, P(A(x)=1) \geq \frac{2}{3}$. Thus from the Chernoff bound,

$$
\begin{aligned}
P\left(A^{\prime}(x)=0\right)=P\left(S<\frac{K}{2}\right) & \leq P\left(S<K \cdot\left(P(A(x)=1)-\frac{1}{6}\right)\right) \\
& \leq P\left(|S-K \cdot P(A(x)=1)|>\frac{K}{6}\right) \\
& \leq 2 e^{-K / 72}=\frac{2}{e} e^{-|x|}<e^{-|x|}
\end{aligned}
$$

For $x \notin L, P(A(x)=1) \leq \frac{1}{3}$. Thus from the Chernoff bound,

$$
\begin{aligned}
P\left(A^{\prime}(x)=1\right)=P\left(S \geq \frac{K}{2}\right) & \leq P\left(S \geq K \cdot\left(P(A(x)=1)+\frac{1}{6}\right)\right) \\
& \leq P\left(|S-K \cdot P(A(x)=1)| \geq \frac{K}{6}\right) \\
& \leq 2 e^{-K / 72}<e^{-|x|}
\end{aligned}
$$

Since A is poly-time computable and K is a polynomial of $|x|$, we have A^{\prime} is also a PPT, and the probability of A^{\prime} making an error is at most $e^{-|x|}$.

10.5 SOP

(a) For f a SOP and π a PPT permutation, $\pi \circ f$ is also a PPT permutation, since both f and π are poly-time computable and are permutations. If $\pi \circ f$ is not a SOP, then there exists a PPT A with not negligible probability such that $\pi \circ f(A(\pi \circ f(x)))=\pi \circ f(x)$. We can design $A^{\prime}(x)=A(\pi(x))$, which is a PPT since A and π are both PPT. Thus for $f(x)$, we have $\pi \circ f\left(A^{\prime}(f(x))\right)=\pi \circ f(x)$ with not negligible probability. Since π is one-to-one, we have $f\left(A^{\prime}(f(x))\right)=f(x)$ with not negligible probability, conflicting with that f is a SOF. So $\pi \circ f$ is also a SOP.
(b) (Collaborate with Adam Granicz, Ke Yang) Given a strong one way function f, we can design

$$
f_{1}(x)=\left(0^{|f(x)|}, f(x)\right),
$$

and

$$
f_{2}(x)=f\left(\mathcal{E}\left(x,\left\lceil\frac{|x|}{2}\right\rceil\right)\right)
$$

where \mathcal{E} is the prefix function defined in Problem 10.3. It is obviously f_{1} and f_{2} are both one-way functions. However, $f_{2} \circ f_{1}$ is a constant, i.e., $f_{2}\left(f_{1}(x)\right)=f\left(0^{|f(x)|}\right)$ is not a one-way function.

10.6 Poly-time distinguishable

If Q and R are poly-time distinguishable, there exists a PPT test T such that

$$
\left|P_{x \leftarrow Q_{n}}(T(x)=1)-P_{x \leftarrow R_{n}}(T(x)=1)\right|
$$

is a nonnegligible function. Let $P_{Q}^{(n)}$ denote $P_{x \leftarrow Q_{n}}(T(x)=1)$ and $P_{R}^{(n)}$ denote $P_{x \leftarrow R_{n}}(T(x)=1)$ for convenience. Thus $\exists c>0, \exists n_{0} \in \mathcal{N}$ such that for $n \geq n_{0},\left|P_{Q}^{(n)}-P_{R}^{(n)}\right|>n^{-c}$.
Design a statistical test $T^{\prime}: 1 . T^{\prime}$ has access to random samples from Q and $R ; 2 . T^{\prime}$ calculates

$$
S_{q}=\sum_{i=1}^{K} T\left(q_{i}\right), \quad S_{r}=\sum_{i=1}^{K} T\left(r_{i}\right),
$$

and returns $T(x)$ if $S_{q} \geq S_{r}$, otherwise returns $1-T(x)$. Here q_{i} and r_{i} are samples from Q_{n} and R_{n} respectively, and $K=12 n^{3 c}$.

- If for $n \geq n_{0}, P_{Q}^{(n)}-P_{R}^{(n)} \geq 0$, then $P_{Q}^{(n)}-P_{R}^{(n)}>n^{-c}$. Thus from the Chernoff bound,

$$
\begin{aligned}
P\left(S_{q}<S_{r}\right) & \leq P\left(S_{q}<K \cdot\left(P_{Q}^{(n)}-\frac{1}{2} n^{-c}\right) \vee S_{r}>K \cdot\left(P_{R}^{(n)}+\frac{1}{2} n^{-c}\right)\right) \\
& \leq P\left(S_{q}<K \cdot\left(P_{Q}^{(n)}-\frac{1}{2} n^{-c}\right)\right)+P\left(S_{r}>K \cdot\left(P_{R}^{(n)}+\frac{1}{2} n^{-c}\right)\right) \\
& \leq P\left(\left|S_{q}-K \cdot P_{Q}^{(n)}\right|>\frac{K}{2} n^{-c}\right)+P\left(\left|S_{r}-K \cdot P_{R}^{(n)}\right|>\frac{K}{2} n^{-c}\right) \\
& \leq 4 e^{-\frac{n^{-2 c}}{4} K}=4 e^{-3 n^{c}}<\frac{1}{4} n^{-c} .
\end{aligned}
$$

The last inequality is due to $c>0 \Rightarrow 3 n^{c}>3 \Rightarrow 16 n^{c} e^{-3 n^{c}}<16 e^{-3}<1$. So

$$
P_{x \leftarrow Q_{n}}\left(T^{\prime}(x)=1\right) \geq P\left(S_{q} \geq S_{r}\right) \cdot P_{Q}^{(n)} \geq\left(1-\frac{1}{4} n^{-c}\right) P_{Q}^{(n)} \geq P_{Q}^{(n)}-\frac{1}{4} n^{-c},
$$

and

$$
P_{x \leftarrow R_{n}}\left(T^{\prime}(x)=1\right)=P\left(S_{q} \geq S_{r}\right) \cdot P_{R}^{(n)}+P\left(S_{q}<S_{r}\right) \cdot\left(1-P_{R}^{(n)}\right) \leq P_{R}^{(n)}+\frac{1}{4} n^{-c} .
$$

Thus

$$
P_{x \leftarrow Q_{n}}\left(T^{\prime}(x)=1\right)-P_{x \leftarrow R_{n}}\left(T^{\prime}(x)=1\right) \geq P_{Q}^{(n)}-P_{R}^{(n)}-\frac{1}{2} n^{-c} \geq \frac{1}{2} n^{-c} .
$$

- If for $n \geq n_{0}, P_{Q}^{(n)}-P_{R}^{(n)}<0$, then $P_{R}^{(n)}-P_{Q}^{(n)}>n^{-c}$. Thus from the Chernoff bound,

$$
\begin{aligned}
P\left(S_{q} \geq S_{r}\right) & \leq P\left(S_{q}>K \cdot\left(P_{Q}^{(n)}+\frac{1}{2} n^{-c}\right) \vee S_{r} \leq K \cdot\left(P_{R}^{(n)}-\frac{1}{2} n^{-c}\right)\right) \\
& \leq P\left(S_{q}>K \cdot\left(P_{Q}^{(n)}+\frac{1}{2} n^{-c}\right)\right)+P\left(S_{r} \leq K \cdot\left(P_{R}^{(n)}-\frac{1}{2} n^{-c}\right)\right) \\
& \leq P\left(\left|S_{q}-K \cdot P_{Q}^{(n)}\right|>\frac{K}{2} n^{-c}\right)+P\left(\left|S_{r}-K \cdot P_{R}^{(n)}\right| \geq \frac{K}{2} n^{-c}\right) \\
& \leq 4 e^{-\frac{n^{-2 c}}{4} K}=4 e^{-3 n^{c}}<\frac{1}{4} n^{-c} .
\end{aligned}
$$

So

$$
P_{x \leftarrow Q_{n}}\left(T^{\prime}(x)=1\right) \geq P\left(S_{q}<S_{r}\right) \cdot\left(1-P_{Q}^{(n)}\right) \geq\left(1-\frac{1}{4} n^{-c}\right)\left(1-P_{Q}^{(n)}\right) \geq 1-P_{Q}^{(n)}-\frac{1}{4} n^{-c}
$$

and

$$
P_{x \leftarrow R_{n}}\left(T^{\prime}(x)=1\right)=P\left(S_{q}<S_{r}\right) \cdot\left(1-P_{R}^{(n)}\right)+P\left(S_{q} \geq S_{r}\right) \cdot P_{R}^{(n)} \leq 1-P_{R}^{(n)}+\frac{1}{4} n^{-c} .
$$

Thus

$$
P_{x \leftarrow Q_{n}}\left(T^{\prime}(x)=1\right)-P_{x \leftarrow R_{n}}\left(T^{\prime}(x)=1\right) \geq P_{R}^{(n)}-P_{Q}^{(n)}-\frac{1}{2} n^{-c} \geq \frac{1}{2} n^{-c} .
$$

Thus, for $n \geq n_{0}$, we always have $P_{x \leftarrow Q_{n}}\left(T^{\prime}(x)=1\right)-P_{x \leftarrow R_{n}}\left(T^{\prime}(x)=1\right) \geq \frac{1}{2} n^{-c}$, positive and nonnegligible.

[^0]: *Since when $|x|=1 \Rightarrow|x|^{c}=1$ for any c, we can specify $f^{\prime}(x)=0$ for $|x|=1$. This will not destroy the whole proof since SOF or SOF^{\prime} only pay attention to input with sufficient large length.
 ${ }^{\dagger}$ When $|x| \geq 2, c \geq 2$, we have $\left(|x|^{c}-1\right)(|x|-1)>2$, i.e., $|x|^{c}+|x|+1<|x|^{c+1}$.

