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10.1 Neither negligible nor nonnegligible?
A function v : N' — R>¢ is negligible if Ve € R, limsupv(n)/n® = 0. Thus, v is not negligible if
Je € R, there are infinity number of n such that v(n)/n® > 1.

A function v : N' — R>¢ is nonnegligible if 3¢ € R, liminf v(n)/n® > 0. Thus, v is not nonnegligible
if Ve € R, there are infinity number of n such that v(n)/n® < 1. (I should say: v is not nonnegligible
if Ve € R and Vr > 0, there are infinity number of n such that v(n)/n® < r. However, if for r < 1
and (¢ + In7), there are infinity number of n such that v(n)/n™" < 1, we have for such n > 3,

v(n)/n® < nlh" < e =1,
i.e., there are infinity number of n such that v(n)/n® < r. So, since we consider ‘V¢’, we can just
consider this simpler situation that there are infinity number of n such that v(n)/n® < 1.)
Define [-], : R — N as the ceiling of factorial:
[z], =k if (k- D! <z <KL
For example, [6], = 6 since 6 = 3!; [6.1]; = 24 since 3! < 6.1 < 4! = 24. Easy to see that []; is

monotonic non-decreasing.

Consider v(n) = 271Dl For p = 28 — 1 and k > 2, v(n) = 2. Thus for ¢ = —2,
v(n)/n® = 27F (2" —1)2 > 2" — 2 > 1. So, there are infinity number of n (= 2% — 1 for k > 2)
such that v(n)/n° > 1. So v(n) is not negligible.

For any ¢ € R, let kg = max {[—c],1}. For any integer k > ko and n = 2¥ [logy(n + D], =
(k4 1)!, thus v(n) = 2=*+D' = k=1 Qo from k > ko > —c and n = 2" > 2, we know

v(in)/n¢<n*t.pF=n"t <1

Thus v(n) is not nonnegligible.

v(n) is monotonic non-increasing, since log(+) and [-] s are both monotonic non-decreasing, and 27%

is monotonic decreasing of z. So v(n) = 92~ Mo82("+11; i5 4 monotonic non-increasing function that
is neither negligible nor nonnegligible.
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10.2 Alternate definition of SOF

For any f : {0,1}* — {0,1}* in SOF’, there exist positive constants ¢; and ¢y such that || <
|f(2)] < |z|2. Thus |f(2)|Y < |z| < |f(z)|". For any PPT A, we can design:

PPT Algorithm A’: For input f(x), compute Ky, = [\f(x)]1/621 and Kpax = Uf(:z:)\l/clj. For

integer k' €y [Kkmin, kmax] (that is, &' is randomly selected from within [kmin, kmax] with
uniform probability), return A(1¥', f(x)).

Since f € SOF’, there is a negligible function v such that
P(f(A'(f(x)) = f(z) : @ € {0,1}") < w(k).

Since kmin > |f(@)[Y? > |27, and kpax < |f(@)|Y < |2|?/°!, the number of integers within
[kmin, Fmax] is at most “90|C2/C1 — ||/ 4 1-|, and |z| is one of such integers. Since in algorithm

A’, K is selected with uniform distribution from all integers between ki, and kpax, we have
P(f(AQF, f(@)) = f(2) @ €0 {0,1}%) < [k — k22 1| w(k).

v(k) is a negligible function, so is [k°/¢1 — k°/¢2 4+ 1] v(k). Thus with the property (a) of an SOF’

function, we know that f € SOF. Thus SOF’ C SOF.

For any f € SOF, we can modify it to f'(z) = (11,0, f(z)).* That is, f'(x) first outputs 11/, then
one 0, then f(x). Since there is a PPT F such that F'(z) = f(x), then obviously there is a PPT
F'(z) = f'(z), since outputting 11*l and one 0 is of polynomial complex. And there is a positive
constant ¢ > 2 such that |f(z)| < |z|° for |z| > 2. Thus'

o' < [f'(@)] < |2l + J2] + 1 < J2|

Since the first 0 in f/(x)’s output indicates the length of the prefix 1’s, we have f'(x) = f'(y) =
(lz] = ly]) A (f(x) = f(y)). Thus for every PPT A,

P(f'(A(f'(x))) = f'(x) : @ €v {0,1}F) < P(F(A(1",0, f(2))) = f(z) : x €v {0,1}").

Using similar techniques used above, we can design a PPT A’ such that A’ first randomly inserts
a 0 into the input (the 0 should be inserted after consecutive 1’s; no other 0 is before the inserted
one) and then calls A to get the output. The number of positions that one 0 can be inserted is less
than |f'(x)|. Thus

P(f(A(L*,0, f () = f(2) : = €y {0,1}") < |a" P(F(A'(1%, f(2)) = f(2) - w €v {0,1}Y).
For A’ since f € SOF, we know there is a negligible function v such that
P(f(A'(1*, f(x)) = f(2) : @ €u {0,1}F) < w(k).

Thus we get
P(f'(A(f'(2))) = f'() : @ €u {0,1}F) < [ w(k),

where |z|°! v(k) is also a negligible function. So f'(x) € SOF'.

*Since when |z| = 1 = |z|° = 1 for any ¢, we can specify f'(z) = 0 for |z| = 1. This will not destroy the whole
proof since SOF or SOF’ only pay attention to input with sufficient large length.
"When || > 2, ¢ > 2, we have (|z|° — 1)(|z| — 1) > 2, i.e., |z + ||+ 1 < |z|°T".
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10.3 Length-preserving SOF

Assume function f € SOF. We want to design a length-preserving strong one way function f’ from
f. First, give three functions and some of their properties:

Append: C(z,k), where z € {0,1}" and k > |z|, appends z with one 0 and 1¥=1#1=1 If k = |2| + 1
then no 1’s appended. For example, C(10,4) = 1001 and C(01,7) = 0101111. Thus |C(z, k)| =
k. Note that k > |z| for C(x, k). That is, C(z, k) always appends some ‘signature’ z. Thus
we have (similar to Problem 10.2) C(z, k) =C(2/, k') & (x =2") A (k= k).

AppendR: Cr(z,k), where z € {0,1}" and k > |z|, append random string of length (k — |z|) to
x.

Prefix: £(x,k), where z € {0,1}" and k& € N, returns the first k& symbols of z. For example,
£(1001,2) = 10. It is easy to see |E(x, k)| = k, and E(Cr(x, k'), |z|) = =.

Since f € SOF, there exist a constant ¢ € A such that |f(z)| < |z|°. For any z with length
n¢, we define f'(z) = C(f(E(x,n)),n). Obviously, f’ is length-preserving, and can be calculated
in polynomial time. From the properties of append function C, f'(z) = f'(2') & |z| = |2/| A
f(E(x,n)) = f(E(2',n)), where n = |z|'/°.

For any PPT algorithm A’ (that can invert f’), we can design another PPT algorithm (to invert
f) AR f(x)] = E(A'[1%,C(f (), k)], k), where k = |z|. We have

P(FARS @) = f@)) = P(FEANS,C(f@),k) k) = FECrk).k))
= P(fA0Y,C(f(@), k) = J'(Crlx. k)
= P (SN Crla k) = F(Calw, k).
The randomness of Cg assures that
P (FADR f@) = f(2) @ €0 {0,11F) = P (F(A0Y, F @) = f(@) 2 eu {0,13).
Thus, since f € SOF, there exists a negligible function v such that
P (f(ADF, f@)]) = f(@) @ €0 {0,1}7) < vk).

Then we have

P (£, @) = /() @ eu {0,17) < w(ke),

and v(k°) is also a negligible function of k. So f’ is a length-preserving strong one-way function.
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10.4 BPP

(a) For such PPT A, we can design a PPT A’(x) as:

Let K = 18|x]2b - t, where t = max{4%,1}. Run A on z for K times. The

number of times that A(z) =1is S = Zfil A;i(z) where A;(x) is the output of the
i-th run of A. If S > £ then A’(z) = 1 otherwise A’(z) = 0.

Forx € L, P(A(z) =1) > H‘:gﬂ Thus from the Chernoff bound,

P(A’(m)zl)zl—P<S<§> 1—P(S<K-(P(A(:n)— L

Vv
|
—_
B
“I 1
o
N——

Vv
|
=
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=
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1—P(|S—K-P(A(:n)— ) >

‘1‘7217

> 1-2 1 K=1_-2"

For |z| > 2, we have 1_|:,b = 4(1 + |z\3—1) <41+ z) <t And for t > 1, te™ is
a decreasing function since d(tggt) = (1 —t)et < 0. Thus te™" < e ! < 1. So we have
1-|e|

—b —b

T >1>eforl—2"> % So for x € L, P(A'(z) = 1) > % (Note: we
can not achieve so high a probability when |z| = 1, since P(A(z) = 1) > % can not assure
PA'(z)=1)=1.)

Forx ¢ L, P(A(z) =1) < k‘:si_b Thus from the Chernoff bound,

P(A'(@:UZP(SZ%) < P<szK-(P(A(x):1)+£))

IA

P (5 K- P(A(z) =1)| > ﬂ[()

T e —t
< 2e 18 =2e ",

b

Since we have proven that for |x| > 2,1 —2e7! > %, we have for z ¢ L, P(A'(z) =1) <
—b

%. (Note: For |z| = 1, this also holds since P(A(z) =1) <0.)

Since A is poly-time computable and K is a polynomial of |z|, we have A’ is also a PPT.

(b) For such PPT A, we can design a PPT A'(x) as:

Let K = 16]z|**. Run A on z for K times. The number of times that A(z) = 1
is S = Zfil A;(x) where A;(x) is the output of the i-th run of A. If S > % then
A'(z) = 1 otherwise A'(x) = 0.
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Forx € L, P(A(z) =1) > % Thus from the Chernoff bound,

P(A’(x)=1)=1—P(S<§> > 1—P<S<K~(P(A(a:):1)_£)>

> 1—P<|S—K-P(A(x): )|>—bK>

el g _9_ 2
> 1—2e 8 =1-—2e >§

Forx ¢ L, P(A(z) =1) < %ﬂcl_b Thus from the Chernoff bound,
/ K ™"
PA'(x)=1)=P SZE < P SZK~(P(A(90):1)+T)

< P (5— K- P(A(z)=1)| > ﬂK)

9= EEK _ 902

e =2e .
- 3

Since A is poly-time computable and K is a polynomial of |z|, we have A’ is also a PPT. So

L € BPP.

(c) If L € BPP, then there exists a PPT algorithm A such that for x € L, P(A(x) = 1) > 2/3 and
for x ¢ L, P(A(z) = 1) < 1/3. Thus we can design a PPT A'(z) as:

Let K = 72(|z|+1). Run A on z for K times. The number of times that A(z) =1
is S = Zfil A;(z) where A;(z) is the output of the i-th run of A. If S > £ then
A'(z) = 1 otherwise A'(z) = 0.

For z € L, P(A(z) = 1) > 2. Thus from the Chernoff bound,

P(s<%) < ps<r-Pum=1-p)

P(A'(z) =0) 5

< P<\S—K-P(A(x) —1)| > %)

< 9e K2 _ 2 —lal _ o-lal
(&

For # ¢ L, P(A(z) = 1) < 1. Thus from the Chernoff bound,

) < P(SzK-(P(A(x):1)+

)

< P<|S—K~P(A(a:)—1)] > %)

[N

< 20 K/T2 ol

Since A is poly-time computable and K is a polynomial of |z|, we have A’ is also a PPT, and
the probability of A’ making an error is at most e~ %,
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10.5 SOP

(a) For f a SOP and m a PPT permutation, 7 o f is also a PPT permutation, since both f and
7 are poly-time computable and are permutations. If 7w o f is not a SOP, then there exists
a PPT A with not negligible probability such that mo f(A(w o f(z))) = mo f(x). We can
design A’(x) = A(w(x)), which is a PPT since A and 7 are both PPT. Thus for f(z), we
have wo f(A'(f(z))) = mo f(x) with not negligible probability. Since 7 is one-to-one, we have
f(A (f(x))) = f(x) with not negligible probability, conflicting with that f is a SOF. So wo f
is also a SOP.

(b) (Collaborate with Adam Granicz, Ke Yang) Given a strong one way function f, we can
design
fi(@) = (O, f(2)),
and

(o) = f€Ge. |5

where £ is the prefix function defined in Problem 10.3. It is obviously fi and fy are both
one-way functions. However, fy o fi is a constant, i.e., fo(fi(z)) = f(0[/®1) is not a one-way
function.
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10.6 Poly-time distinguishable

If Q and R are poly-time distinguishable, there exists a PPT test T" such that
|Poq.(T(x) =1) = Prr, (T(z) = 1)
is a nonnegligible function. Let Pézn) denote Py, (T(z) = 1) and PI({L) denote P, g, (T'(z) =1)

for convenience. Thus J¢ > 0, dng € N such that for n > ny, ‘Pé?n) — PI(;) >n"c.

Design a statistical test 7”: 1. T” has access to random samples from @ and R; 2. T" calculates

K K
Sq=> T(a), Sr=>) T(r),
=1 =1

and returns 7'(z) if S; > S,, otherwise returns 1 — T'(z). Here ¢; and r; are samples from @,, and
R,, respectively, and K = 12n3¢.

e If for n > ny, Pén) — Pén) > 0, then Pén) — P}%n) > n~ ¢ Thus from the Chernoff bound,

1 1
P(S,<S,) < P (sq <K-(PJ) - S IVE > K- (P 4 §n—0)>

U n 1 _
< P(Sq<K-(PC(2)—§n C))+P<ST>K-(P](%)+—n C))

2
n K _ n| K
< P(’Sq—K-Pé) > "’>+P<ST—K-PI(%) >3 )
7”72CK —3n¢ 1 —c
< 4de T a = 4e <Zn .

The last inequality is due to ¢ > 0 = 3n¢ > 3 = 16n°% 3" < 16e~> < 1. So

P (T'(@) =1) > P(S, > S,) - Py > <1 - in”) Py > Py - in—a
and
Py g, (T'(x) =1) = P(S; > S,) - PY) + P(S, < S,) - (1 — PY) < PUY 4 in*c_
Thus
Poqu(T'(z) = 1) = Poc g, (T'(2) = 1) > PYY — PV - %n_c > %n—c.

o If for n > ny, PCS") — PI({L) < 0, then PI({L) — Pé?n) > n~¢ Thus from the Chernoff bound,

ny 1 _ ny 1 _
P(S,>5,) < P(Sq>K-(Pé)+2n C)vs,ngK-(P]g)fﬂ C))

< P (sq > K- (P + %n)) +P (sr < K- (P - 3n0)>

K
> 571_0) +P<

—C

S, — K- P

IA

P (’Sq ~ K- P

n—2c

e T K =47 <

IN

n

|
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So

n 1 — n n —
Pocq,(T'(x) =1) > P(S; < 5,)- (1 - PJ) > <1‘Z” > (1-P)=1- Py — —n7e,

and
Poc g, (T'(2) =1) = P(S, < S,)- (1 =PIy + P(S, > S,) - PY) <1— P 4 infc.
Thus

n n 1 _
Pocgu(T'(@) = 1) = Po g, (T'(2) = 1) > P — PY) — Sn7e >

Thus, for n > ng, we always have Py q, (T"(z) = 1) — Pyep, (I'(z) = 1) > in=¢, positive and
nonnegligible.



