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9.1 Shrank’s algorithm

n = 1823, m = d
√
ne = 43, g = 5, y = 693. The extended Euclidean algorithm gives 5 ×

1094 − 3 × 1823 = 1, i.e., g−1 = 1094 (mod n). Compute (gim mod n) and (y · g−i mod n) for
i = 0, 1, . . . ,m− 1, we find that∗

g2m = y · g−12 = 702 (mod n),

i.e.,
g2m+12 = g98 = y (mod n),

or
log5 693 = 98 (mod 1823).

By the way, 3323 = 31234 = 693 (mod 1823) and ord(3) = 911.

I list the commands I used in Mathematica to solve this problem here.

In[1]:= n = 1823; g = 5; y = 693; m = Ceiling[Sqrt[n]];
In[2]:= list1 = PowerMod[g, m*Range[0, m - 1], n]
Out[2]= {1, 480, 702, 1528, 594, 732, 1344, 1601, 997, 934, 1685,

1211, 1566, 604, 63, 1072, 474, 1468, 962, 541, 814, 598, 829,
506, 421, 1550, 216, 1592, 323, 85, 694, 1334, 447, 1269, 238,
1214, 1183, 887, 1001, 1031, 847, 31, 296}

In[3]:= list2 = Mod[y*PowerMod[g, -Range[0, m - 1], n], n]
Out[3]= {693, 1597, 684, 866, 1267, 618, 1582, 681, 1230, 246, 1143,

1687, 702, 505, 101, 1114, 952, 555, 111, 1116, 1317, 628,
1584, 1046, 1303, 1719, 1073, 1673, 1793, 1817, 728, 1604,
1050, 210, 42, 373, 1533, 1765, 353, 1529, 1035, 207, 406}

In[4]:= Sort[Flatten[{list1, list2}]]
Out[4]= {1, 31, ..., 694, 702, 702, 728, ..., 1793, 1817}
In[5]:= id = 702;
In[6]:= First[First[Position[list1, id]]] - 1
Out[6]= 2
In[7]:= First[First[Position[list2, id]]] - 1
Out[7]= 12

∗My way to find this is: 1. generate two lists of gim (mod n) and y · g−i (mod n); 2. sort these two lists; 3.
merge the two sorted list. In the procedure of merging, two identical entries in those two lists will be found. The
time complexity is O(m logm).
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9.2 Discrete log problem

The complexity of the discrete log problem does not depend on the choice of g.

To prove this, suppose for another primitive element ĝ ∈ Z∗p there exists an algorithm A with
time complexity f̂(p) which computes the discrete log based on ĝ. Thus we can get t = logĝ g
and x̂ = logĝ y, i.e., g = ĝt mod p and y = ĝx̂ mod p, for any y ∈ Z∗p . Since both g and ĝ

are primitive elements, ord(g) = ord(ĝ) = φ(p). From ord(g) = ord(ĝ)/ gcd(t, ord(ĝ)),† we also
have gcd(t, φ(p)) = 1. Thus by the extended Euclidean algorithm, there is an integer a such that
ta = 1 mod φ(p). So

gax̂ = ĝtax̂ =
(
ĝ1 mod φ(p)

)x̂
= ĝx̂ = y (mod p).

Thus by 2 runs of A and 1 run of the extended Euclidean algorithm, we get the discrete log of y
based on g is ax̂ mod φ(p), i.e.,

logg y = a logĝ y mod φ(p). (1)

The time complexity of (1) is just the same as f̂(p), since the complexity of discrete log problem is
assumed to be higher than log p, which is the complexity of the extended Euclidean algorithm on
gcd(t, φ(p)). Thus, the choice of g does not affect the complexity of the discrete log problem.

†R. J. McEliece, Finite Fields for Computer Scientists and Engineers, Boston: Kluwer Academic Publishers, 1987.
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9.3 Professor Evenbetter’s method (Collaborate with Xin Yu)

I want to say 3 points about Professor Evenbetter’s method.

1. The decoding is almost always unique, though there do exist many ciphertexts that have 2
square roots with form xr0 . . . 0 mod n and distinct x.

2. We can slightly modify the method to make the decoding always unique.

3. The proof that Rabin’s cryptosystem is equivalent to factoring (I will call it “Rabin’s proof”
below) breaks down for this one.

Here are the details:

1. Suppose for ciphertext y there are two square roots xr0 . . . 0 and x′r′0 . . . 0 such that x, r, x′

and r′ are of (or, less than) k/3 bits and x 6= x′. Without loss of generality, assume x > x′.
From

(xr0 . . . 0)2 = (x′r′0 . . . 0)2 = y (mod n),

we get (note that 2−1 = (n+ 1)/2 mod n)

(xr)2 = (xr0 . . . 0)2 · 2−2k/3 = (x′r′0 . . . 0)2 · 2−2k/3 = (x′r′)2 (mod n).

Since xr + x′r′ is the sum of two 2k/3 bits numbers, it is less than n which is k-bit. So
xr 6= −x′r′ mod n.‡ From Rabin’s proof, we know{

xr + x′r′ = tp
xr − x′r′ = t′q

or
{
xr + x′r′ = t′q
xr − x′r′ = tp

for some positive integers t and t′ (since x > x′). Thus

xr =
tp+ t′q

2
, x′r′ =

|tp− t′q|
2

. (2)

(Note that since p, q are odd and xr, x′r′ are integers, the parities of t and t′ must be the
same.) In other hand, if for some positive numbers t and t′, the two numbers xr and x′r′

defined in (2) are of or less than 2k/3 bits, we have

(xr)2 − (x′r′)2 = tt′pq = tt′n = 0 (mod n),

i.e., (xr)2 = (x′r′)2 mod n. Thus

(xr0 . . . 0)2 = (xr)2 · 22k/3 = (x′r′)2 · 22k/3 = (x′r′0 . . . 0)2 (mod n),

which implies for ciphertext y = (xr0 . . . 0)2 there are two distinct square roots xr0 . . . 0 and
x′r′0 . . . 0.

Usually, p and q are roughly k/2 bits long, thus leafs t and t′ a space of within rough 2k/3−
k/2 = k/6 bits. Then the combination of t and t′ (with the same parity) is about 2k/3−2,
or just say, O(2k/3). This is the rough number of ciphertexts that have no unique decoding.
Compared with the whole space of ciphertexts, whose volume is O(22k/3) since xr is of 2/3k
bits long, it is very small, and the ratio tends to 0 when k becomes larger and larger.

‡Since n = pq is an odd integer, xr0 . . . 0 6= −x′r′0 . . . 0 mod n, for 0 < xr0 . . . 0 + x′r′0 . . . 0 < 2n and it is even.
Thus we also know xr 6= −xr mod n.

3



CS 138b Computer Algorithm
Homework #9

Ling Li, ling@cs.caltech.edu
January 19, 2001

2. Define the ciphertext that has no unique encoding the invalid ciphertext. For a fixed message
x, there are 2k/3 choices for r. The encoder can try several r’s to ensure that (xr0 . . . 0)2 is
not an invalid ciphertext. Since the ratio of invalid ciphertexts to all ciphertexts is very small
(see above discussion), we can always find a good r such that (xr0 . . . 0)2 is not invalid with
very small number of tries.

3. In Rabin’s proof, x2 is fed into the cracking algorithm and a root x′ other than ±x is expected
to be produced by the algorithm. Thus n can be factored by calculating gcd(n, x± x′).
However, if we feed (xr0 . . . 0)2 into a cracking algorithm to Professor Evenbetter’s method,
the possibility that we would get a root x′r′0 . . . 0 other than xr0 . . . 0 is very small, roughly
2−k/3 (see discussion 1). And it is totally not possible if the modification in discussion 2 is
adopted. Thus it is not feasible to continue the proof that it will be equivalent to the problem
of factoring.

One may argue that the input to the cracking algorithm may not be of the form (xr0 . . . 0)2.
Yes, we can feed any x2 into the cracking algorithm and hope it will return some x′r′0 . . . 0
such that (x′r′0 . . . 0)2 = x2 mod n and x′r′0 . . . 0 6= ±x mod n. However, as we have seen in
discussion 1, the volume of the valid ciphertext space is about 22k/3. Thus the probability
that a random chosen x2 will make the cracking algorithm return x′r′0 . . . 0 is roughly 2−k/3,
still very small.

Another thing I want to mention here is that a cracking algorithm to Professor Evenbetter’s
method need not provide the whole string of xr0 . . . 0. It is only required that it can calculate
x from (xr0 . . . 0)2.
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9.4 El Gamal with the same k

By using the same random number k, the El Gamal cryptosystem puts

x1 → (ck mod p, x1d
k mod p) and x2 → (ck mod p, x2d

k mod p).

Since the adversary knows both ciphertexts and x1, he/she can calculate[
(x2d

k mod p)(x1d
k mod p)−1x1

]
mod p

to get x2 mod p, since[
(x2d

k mod p)(x1d
k mod p)−1x1

]
mod p = (x2d

kd−kx−1
1 x1) mod p = x2 mod p.

From x1 6= 0 (mod p) and d = ca mod p and c ∈ Z∗p , we have x1d
k ∈ Z∗p , so (x1d

k mod p)−1 exists
and can be calculated by the extended Euclidean algorithm.
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9.5 Man in the middle & CA

By introducing the Certificate Authority (CA) into the system, every one has his own private key
S and public key P . Then Alice can send Bob her ID (issued by CA) and the gx, both signed with
her private key SA. Here, ‘signed with private key’ means to send two copies of messages, with one
encrypted with the private key and the other not. Bob can verify the ID with the public key of CA
and knows the validity of the ID and the owner of the ID. Bob can also verify the ID and gx with
the public key P enclosed in the ID to know whether the sender owns the private key S which is
paired with P . That is, Bob can know whether the sender is the owner of the ID. After these two
verifications, Bob verifies the identity of Alice and gets gx from Alice.

Then Bob sends his ID and gy signed with his private key SB to Alice. By the same procedures,
Alice can verify the identity of Bob and get gy. Thus they can share the same key gxy.

In this case, Moe can get gx and gy, and both Alice’s and Bob’s ID. However, he can not change
gx to gx

′
or gy to gy

′
since he has no private key SA or SB; he can not change the transmitted

public key (thus he can use his own private key to sign a new gx
′
) since he can not produce an

ID with a new public key but with the identity as Alice or Bob. Thus Moe can not know the
conversation contents between Alice and Bob, provided that get gxy from gx and gy is fairly hard.
So, the introducing of CA does defeat Moe as a man in the middle.
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9.6 El Gamal and Diffie-Hellman

Here, E is used to denote the algorithm that can solve x mod p by given prime number p, primitive
element c ∈ Z∗p , d = ca mod p and the encrypted message (ck mod p, xdk mod p). The random
numbers a and k are unknown to E . That is, E can crack the El Gamal cryptosystem. D is used to
represent the algorithm that can get gab mod p by given prime number p, primitive element g ∈ Z∗p ,
ga mod p and gb mod p. However, a and b are unknown to D. So D is the algorithm to crack the
Diffie-Hellman key exchange protocol. Let E and D share one p.

1. E ⇒ D. Now we have E and want to design D. Let c = g, d = ga mod p, x = gab,
and k = −b, though the last two values are unknown. Thus the encrypted message is
(ck mod p, xdk mod p) = (g−b mod p, 1). Since from the extended Euclidean algorithm we
can get g−b = (gb)−1 with modulus p. Now we have p, c, d, and the encrypted message
(g−b mod p, 1), the algorithm E can get the message x mod p, which is gab mod p.

2. D ⇒ E . When p, c, d and (ck mod p, xdk mod p) as described above are given, we can feed c
as g, d as ga, (c−k mod p) as gb to algorithm D, and get

gab mod p = d−k mod p.

Then we can get x mod p by

(xdk mod p) · (gab mod p) = xdkd−k mod p = x mod p.

Since c is a primitive element of Z∗p , we know c−k mod p exists and it can be calculated by
the extended Euclidean algorithm on gcd(ck mod p, p).

The transformations between D and E only need 1 run of the extended Euclidean algorithm and a
constant number of overload (multiplication, mod), thus the complexity is far below polynomial-
time. So D and E are computationally equivalent, i.e., cracking the El Gamal cryptosystem and
the Diffie-Hellman protocol are computationally equivalent.
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