F. 1 Perfect matching with min max weight

Assume the number of vertices in G is even, i.e., $|V|=2 n$. Otherwise there doesn't exist a perfect matching. Let $m=|E|$. A naive algorithm to do the job is

Init: Sort the weights $w(e)$ for $e \in E$ in ascending order. Let $k=n$, and $G^{\prime}=\left(V, E^{\prime}\right)$, where E^{\prime} only contains k edges with the first k smallest weights. Go to Match.

Match: Apply the algorithm of Micali and Vazirani for finding maximum matching in general graphs to G^{\prime}. If the maximum matching is a perfect matching, output it and halt. Otherwise go to Next.

Next: If $k \geq m$, output no perfect matching and halt. Otherwise, $k \leftarrow k+1$, and add the edge with the $k^{\text {th }}$ smallest weight (which is the edge with smallest weight which is not in E^{\prime}) into E^{\prime}. Go to Match.

The correctness of this algorithm is very obvious. The worst time is $(m-n)$ times $O(m \sqrt{n})$ which is the time of the algorithm of Micali and Vazirani, plus the time for sorting and adding edges, which is $O(m \log m)$. Thus the total time is $O\left(m^{2} \sqrt{n}\right)$.
Another way is to convert the problem into a minimum weighted perfect matching problem, by setting the weight of edge e as $n^{w(e)}$. Let G^{\prime} denote the transformed graph. A minimum weighted perfect matching M in G^{\prime} corresponds to a perfect matching M in G with minimum $\max _{e \in M} w(e)$, since the weights sum is solely decided by the maximum w in the matching. We use n as the base in case that there are (at most) $n-1$ edges with the same w. The Edmonds' blossom algorithm can find a minimum weighted perfect matching in $O\left(n^{2} m\right)$. Thus the total time for this algorithm is also $O\left(n^{2} m\right)$.

F. 2 Directed matching

Idea: Construct a bipartite graph with twice number of vertices as in G and reduce the problem to a perfect matching in that bipartite graph.

Algorithm:

Trans: $L=\emptyset, R=\emptyset, E^{\prime}=\emptyset$. For each vertex $v \in V, L \leftarrow L \cup\left\{\mathbf{l}_{v}\right\}, R \leftarrow R \cup\left\{\mathbf{r}_{v}\right\}$. For every edge $(u, v) \in E, E^{\prime} \leftarrow E^{\prime} \cup\left\{\left(1_{u}, r_{v}\right)\right\}$. We get a bipartite graph $G^{\prime}=\left(L, R, E^{\prime}\right)$. Go to Match.
Match: Apply the algorithm of Hopcroft and Karp for unweighted matching in bipartite graphs to G^{\prime}. If there is no perfect matching, declare there is no directed matching in G and halt. Otherwise go to TransBack.
TransBack: Let M^{\prime} denote the perfect matching found in Match. $M=\emptyset$. For every edge $\left(\mathbf{1}_{u}, r_{v}\right) \in M, M \leftarrow M \cup\{(u, v)\}$. Declare $H=(V, M)$ is a directed matching (subgraph) in G and halt.

Correctness proof: After the step Trans, we have $L=\left\{l_{v}: v \in V\right\}, R=\left\{\mathrm{r}_{v}: v \in V\right\}$, and $E^{\prime}=\left\{\left(1_{u}, \mathrm{r}_{v}\right):(u, v) \in E\right\}$.

- For any directed matching $H=(V, M)$ in G, the in-degree and out-degree of every vertex in H is 1 . Thus we have
Properties M : For every vertex $u \in V$, there exists one and only one vertex $v \in V$ such that $(u, v) \in M$; For every vertex $v \in V$, there exists one and only one vertex $u \in V$ such that $(u, v) \in M$.
Construct $M^{\prime}=\left\{\left(1_{u}, r_{v}\right):(u, v) \in M\right\}$. Thus from $M \subseteq E, M^{\prime} \subseteq E^{\prime}$. And by the construction of L and R, we have properties similar to those stated above:
Properties M^{\prime} : For every vertex $1_{u} \in L$, there exists one and only one vertex $r_{v} \in R$ such that $\left(l_{u}, r_{v}\right) \in M$; For every vertex $\mathbf{r}_{v} \in R$, there exists one and only one vertex $l_{u} \in L$ such that $\left(l_{u}, r_{v}\right) \in M$.
Hence M is a perfect matching in the bipartite graph G^{\prime}.
- For any perfect matching M^{\prime} in G^{\prime}, construct $M=\left\{(u, v):\left(l_{u}, r_{v}\right) \in M^{\prime}\right\}$. Since E^{\prime} is constructed from E, it is obviously $M \subseteq E$. And from M^{\prime} is a perfect matching, we have properties M^{\prime} above. Thus we also get properties M above. Thus $H=(V, M)$ is a directed matching in G.

Hence finding a directed matching in G is equivalent to finding a perfect matching in G^{\prime}.
Runtime analysis: Let $n=|V|$ and $m=|E|$. The runtime of Trans is $O(n+m)$ and that of Match is $O(m \sqrt{n})$. The step TransBack takes time $O(n)$, since there are exactly n edges in a perfect matching. Thus the total time is $O(n+m \sqrt{n})$.

F. 3 Vertex-disjoint paths

Main idea: Transform the graph G into a unit capacity graph G^{\prime} such that any flow in G^{\prime} consists of vertex-disjoint path flows. And the value of the max flow in G^{\prime} is the maximum number of vertex-disjoint paths in G.

Algorithm:

Trans: Initially $V^{\prime}=\emptyset, E^{\prime}=\emptyset$. For every vertex $v \in V$, add two vertices i_{v} and o_{v} into V^{\prime}, and add an edge ($\mathbf{i}_{v}, \mathrm{o}_{v}$) into E^{\prime}. For every edge $(u, v) \in E$, add an edge ($\mathrm{o}_{u}, \mathbf{i}_{v}$) into $E^{\prime} . G^{\prime}=\left(V^{\prime}, E^{\prime}, c\right)$, where $c=1$ for all edges in E^{\prime}. Go to Maxflow.
Maxflow: Use Dinic's algorithm to get a max flow f from o_{s} to i_{t} in G^{\prime}. Output $|f|$ as the maximum number of vertex-disjoint paths from s to t in G.

Correctness proof: After Trans, we get $V^{\prime}=\left\{\mathrm{i}_{v}, \mathrm{o}_{v}: v \in V\right\}$ and $E^{\prime}=\left\{\left(\mathrm{i}_{v}, \mathrm{o}_{v}\right): v \in V\right\} \cup$ $\left\{\left(\mathrm{o}_{u}, \mathrm{i}_{v}\right):(u, v) \in E\right\}$.

- Let P be any set of vertex-disjoint paths from s to t in G. For each path $\left(u_{0}, u_{1}, \ldots, u_{k}\right) \in$ P with $u_{0}=s, u_{k}=t$, there is a path $p^{\prime}=\left(o_{u_{0}}, \mathbf{i}_{u_{1}}, \mathrm{o}_{u_{1}}, \ldots, \mathbf{i}_{u_{k-1}}, \mathrm{o}_{u_{k-1}}, \mathbf{i}_{u_{k}}\right)$ in G^{\prime} with $\mathrm{o}_{u_{0}}=\mathrm{o}_{s}, \mathbf{i}_{u_{k}}=\mathbf{i}_{t}$. Let P^{\prime} be the set of those p^{\prime} paths. Since paths in P are vertexdisjoint (they do not share vertices other than s, t), paths in P^{\prime} are also vertex-disjoint. Then P^{\prime} can be regarded as a collection of vertex-disjoint path flows in G^{\prime}, each path flow having value 1. Thus we get a flow in G^{\prime} from o_{s} to i_{t}, with value $\left|P^{\prime}\right|=|P|$, the number of paths in P.
- In Homework 13.2, we have shown that for a unit capacity graph with a max flow f, there are $|f|$ edge-disjoint paths from s to t. In G^{\prime}, any edge must have o_{u} as one end and \mathbf{i}_{v} as the other end, for some u and v. Thus any path flow from o_{s} to \mathbf{i}_{t} must be $p^{\prime}=\left(\mathbf{o}_{s}, \mathbf{i}_{u_{1}}, o_{u_{1}}, \ldots, \mathbf{i}_{u_{k-1}}, \boldsymbol{o}_{u_{k-1}}, \mathbf{i}_{t}\right)$, for some u_{i}. By the construction in Trans, there is only one edge from $\mathbf{i}_{u_{i}}$ to $o_{u_{i}}$, thus the 'edge-disjoint' paths in G^{\prime} are also 'vertexdisjoint'.* Thus for any max flow f in G^{\prime}, there are $|f|$ vertex-disjoint paths from o o_{s} to i_{t} in G^{\prime}. Those paths correspond to $|f|$ vertex-disjoint paths in G, with the inverse mapping mentioned in the above paragraph.

Thus the maximum number of vertex-disjoint paths in G is just the value of max flow in G^{\prime}.
Runtime analysis: Let $n=|V|$ and $m=|E|$. The runtime of Trans is $O(n+m)$ and after that, $\left|V^{\prime}\right|=2 n,\left|E^{\prime}\right|=n+m$. The time for Dinic's algorithm is $O\left(\left|E^{\prime}\right|\left|V^{\prime}\right|^{2}\right)=O\left((n+m) n^{2}\right)$. Thus the total runtime is $O\left(n^{2}(n+m)\right)$. Or, if the MPM algorithm is used in the step Maxflow, the total runtime is $O\left(n^{3}+m\right)$.

[^0]
F. 4 Identification and square root

(a) For any quadratic residue $x \in Z_{n}^{*}, x$ has 4 different square roots in Z_{n}^{*}. If we get two of them, r_{1}, r_{2} and $r_{1} \not \equiv \pm r_{2} \bmod n$, then from $\left(r_{1}+r_{2}\right)\left(r_{1}-r_{2}\right)=r_{1}^{2}-r_{2}^{2} \equiv 0 \bmod n$, we know $\left(r_{1}+r_{2}\right) \bmod n$ is one of p and q, and $\left(r_{1}-r_{2}\right) \bmod n$ is the other. Let A be the algorithm assumed in the problem which can compute a square root of $x \bmod n$ in time p, where p is a polynomial of $\log n$. Thus we have the algorithm below:

Loop: Select $r \in_{U}\{1,2, \ldots, n-1\}$. If $\operatorname{gcd}(n, r) \neq 1$, output r as $p, n / r$ as q, and halt the algorithm. Otherwise go to Root.
Root: Calculate $x \equiv r^{2} \bmod n$. Use A to get a square root r^{\prime} of x. If $r \not \equiv r^{\prime} \bmod n$, output $\left(r+r^{\prime}\right) \bmod n$ as p and $\left(r-r^{\prime}\right) \bmod n$ as q, and halt. Otherwise go to Loop.

For any selected r, with probability no more than $\frac{1}{2}$ (since the algorithm may halt in Loop), the algorithm will halt in Root without going back to Loop. Thus the expected runtime of this algorithm is no more than

$$
p+\frac{p}{2}+\frac{p}{4}+\cdots=2 p
$$

which is also polynomial in $\log n$. (WLOG, we assume that $p>\log ^{2} n$. Thus the time of gcd and division and multiplication of numbers of $\log n$ bits can be omitted compared to p.)
(b) For $b=0$, Maggie can select r and compute $x \equiv r^{2} \bmod n$. For $b=1$, Maggie can select y and compute $x \equiv y^{2} u^{-1} \bmod n$. Thus if Maggie knew which bit b Victor would send, she could fool Victor. However, she can not know in advance which b Victor will send. Thus to fool Victor no matter what x she sent, Maggie must have the ability to get a pair of y and r in polynomial time such that $x \equiv r^{2} \bmod n$ and $u \equiv y^{2} x^{-1} \bmod n$. Thus by calculating $a \equiv y r^{-1} \bmod n$, she get $u \equiv y^{2} x^{-1} \equiv\left(y r^{-1}\right)^{2} \equiv a^{2} \bmod n$. That is, Maggie can compute a square root of u. The total time to calculate a is still polynomial in $\log n$ since to get a from y and r can be done in $O\left(\log ^{2} n\right)$.
(c) I have two readings for this question. One is that Maggie always chooses an r and compute $x \equiv r^{2} \bmod n$. The other is that Maggie can use either way in (b) to compute x. For the first case, Maggie can always fool Victor when he chooses $b=0$. But for $b=1$, she has to get y such that $u \equiv y^{2} x^{-1} \bmod n$ in polynomial time in order to fool Victor. For the second case, she can fool Victor if b is the 'correct' bit with respect to her choice of x. That is, if she chooses $x \equiv y^{2} u^{-1} \bmod n$ and $b=1$, or if she chooses $x \equiv r^{2} \bmod n$ and $b=0$, she can fool Victor. For the other b, she also has to get the pair of y and r such that $x \equiv r^{2} \bmod n$ and $u \equiv y^{2} x^{-1} \bmod n$. Thus for either reading, in order to fool Victor, the probability that Maggie has to know y and r simultaneously is $\frac{1}{2} .{ }^{\dagger}$
From the analysis in (b), knowing y and r simultaneously leads to solving a square root of u. Since the probability that Maggie can fool Victor is at least $\frac{3}{4}$, then the probability

[^1]that she can compute a is at least $\frac{1}{2}$ (otherwise the probability of fooling Victor is less than $\left.\frac{1}{2}+\frac{1}{2} \times \frac{1}{2}=\frac{3}{4}\right)$.
Thus she can use an algorithm similar to that in (a), to randomly select x and compute a. The expected runtime is twice the time she uses to calculate a in one run, which is polynomial. Thus she can compute a square root of u in expected polynomial time.

An extension of this question is that if Maggie can compute a square root of u in polynomial time with probability at least $\frac{1}{p}$, where p is any polynomial in $\log n$, then she can calculate a square root of u in expected polynomial time.
(d) Since we are pretty sure that there is no algorithm to factor n in time polynomial in $\log n$, the probability that Maggie can compute a square root of u in polynomial time is not nonnegligible (otherwise from (c) and (a), n can be factorized in expected polynomial time.) Maggie can only guess a b, select a strategy to compute x according to b, and hope that Victor will also choose that b. Thus the probability that Maggie can fool Victor in one trial is at most $\frac{1}{2}$. Hence for T trials, the probability that Maggie fools Victor is at most 2^{-T}.
However, we assumed in above discussion that the probability of Maggie fooling Victor in those T trials are independent. This is true if the x used in every trial is different, which requires T is small relative to n (such as $T=\log ^{c} n$ for some constant c). If T is really large, say $T>n$, then during those trials some x and b pairs would appear several times and thus Maggie can reuse some of her answers in previous trials. Hence the probability that Maggie fools Victor would be larger than 2^{-T}, for T large relative to n.

F. 5 SOP and PRG

Since f is a strong one-way function, by definition there exists a PPT F such that $F(x)=f(x)$. Thus we can design a statistical test T such that $T\left(x_{1} \cdots x_{n} x_{n+1} \cdots x_{2 n}\right)=1$ if and only if $F\left(x_{1} \cdots x_{n}\right)=x_{n+1} \cdots x_{2 n}$. Obviously T is a PPT.
For $h(x)=(f(x), f(f(x)))$, we have $T(h(x))$ is always 1, i.e.,

$$
P_{x \leftarrow U_{n}}(T(h(x))=1)=1 .
$$

However, it is obvious that

$$
P_{x \leftarrow U_{2 n}}(T(x)=1)=\frac{1}{2^{n}} .
$$

Thus $h(x)$ is not a PRG.
By the way, there is a theorem saying $h(x)=(f(x), b(x))$ is a PRG, if f is an SOP and b is a hard-core bit for f.

F. 6 Yet another random walk

(a) Let P be the set of all primes p less than n. Then any $\ell(1 \leq \ell<n)$ can be written as

$$
\ell=\prod_{p \in P} p^{m(p)}
$$

By the fundamental theory of arithmetic (unique factorization), to get $L=\ell$, the random walk must stay $m(p)$ time steps at p for every $p \in P$. Thus the probability of $L=\ell$ is

$$
\prod_{p \in P} \frac{p-1}{p^{m(p)+1}}=\prod_{p \in P} \frac{1}{p^{m(p)}} \prod_{p \in P} \frac{p-1}{p}=\frac{1}{\ell} B(n) .
$$

(b) Step (i) consists of a random walk and multiplying of $p^{m(p)}$ over all primes p less than n. As proved in Homework 16.4(d), the random walk takes expected time $1+H(n-1)$. Since $H(n-1)<1+\log (n-1)<2 \log n$ for $n \geq 2$, the time of this part is just $O(\log n)$.
To show that step (i) can be done in expected time polynomial in $\log n$, we need to show that deciding whether a number p is a prime or not could be done in expected time polynomial in $\log n$. This can be implied by the fact that PRIMES is in co-RP $\cap \mathbf{R P}$. PRIMES $\in \mathbf{c o - R P}$ means there exists a randomized algorithm, running in expected polynomial time (in $\log n$, which is the number of bits in p), which for p is a prime, announces p is a prime, and for p is not a prime, announces with probability at least $\frac{1}{2}$ that p is not a prime. And symmetrically, PRIMES $\in \mathbf{R P}$ means there exists a randomized algorithm, running in expected polynomial time (in $\log n$), which for p is not a prime, announces p is not a prime, and for p is a prime, announces with probability at least $\frac{1}{2}$ that p is a prime. Thus we can run both randomized algorithms simultaneously, to decide whether p is a prime. ${ }^{\ddagger}$ Thus the time for step (i) is really polynomial in $\log n$.
However, this can't be implied only from that PRIMES is in co-RP $\cap \mathbf{N P}$, since we need both algorithms together to decide the primality of p.
(c) Assume that there is a positive c such that $B(n) \geq \frac{1}{c \lg n}$. The algorithm reaches step (iii) iff $L \leq n-1$. From (a), the probability is

$$
\begin{equation*}
\sum_{\ell=1}^{n-1} \frac{1}{\ell} B(n)=H(n-1) B(n) \geq \frac{H(n-1)}{c \lg n} \tag{1}
\end{equation*}
$$

For $n \geq 3$, we have $(n-1)^{2}>n$. Thus $H(n-1)>\log (n-1)>\frac{1}{2} \log n$, and that probability for $n \geq 3$ is at least

$$
\frac{\frac{1}{2} \log n}{c \lg n}=\frac{1}{2 c \lg e}
$$

[^2](d) When the algorithm reaches step (iii), L can be any of $1,2, \ldots, n-1$. For a specific ℓ in the range $1 \leq \ell<n$, the probability that ℓ is generated in step (i) and then passes step (iii) is
\[

$$
\begin{equation*}
\frac{1}{\ell} B(n) \frac{\ell}{n-1}=\frac{B(n)}{n-1} . \tag{2}
\end{equation*}
$$

\]

Hence the probability that the algorithm goes on to step (iv) rather than returning to (i) is

$$
\sum_{\ell=1}^{n-1} \frac{B(n)}{n-1}=B(n)
$$

The probability that the algorithm can reach (iii) is $H(n-1) B(n)$ (see (1)).Thus the conditional probability that the algorithm goes on to (iv) given it has reached (iii) is

$$
\frac{B(n)}{H(n-1) B(n)}=\frac{1}{H(n-1)} .
$$

(e) From (b), step (i) can be implemented in expected time polynomial in $\log n$. Denote that time by T. From (c), the algorithm reaches (iii) with probability at least $\frac{1}{2 c \lg e}$. Then the expected time to reach (iii) is at most

$$
T+T\left(1-\frac{1}{2 c \lg e}\right)+T\left(1-\frac{1}{2 c \lg e}\right)^{2}+\cdots=\frac{T}{1-\left(1-\frac{1}{2 c \lg e}\right)}=(2 c \lg e) T
$$

From (d), when the algorithm reaches step (iii), it goes on to step (iv) with probability $\frac{1}{H(n-1)}$. By similar computation, we get the expected time for the algorithm to reach step (iv), that is, to terminate, is at most (since $H(n-1)<2 \log n$ for $n \geq 2$)

$$
2 c \lg e H(n-1) T \leq(4 c \lg e \log n) T
$$

which is also a polynomial in $\log n$.
When the algorithm halts and outputs ℓ, ℓ must be in the range $1 \leq \ell<n$, and the probability of ℓ only depends on the last run of the algorithm. From (2), the probability that ℓ is generated in step (i) and then passes step (iii) (and then is outputted) is $\frac{B(n)}{n-1}$, which is independent of ℓ. Thus the algorithm outputs an integer uniformly between 1 and $n-1$.
We can also calculate the probability of each integer produced as the conditional probability of ℓ being generated and outputted given the algorithm halts, which is

$$
\frac{\frac{B(n)}{n-1}}{\sum_{l=1}^{n-1} \frac{B(n)}{n-1}}=\frac{1}{n-1}
$$

[^0]: ${ }^{*}$ Even taking into consideration that there may exist path $\left(o_{s}, \mathrm{i}_{t}\right)$, that is right since we do not count in o_{s} and i_{t} as shared vertices for vertex-disjoint paths.

[^1]: ${ }^{\dagger}$ Here we assume b is uniformly chosen by Victor. If b is not uniformly chosen, for example, $P(b=0)>\frac{3}{4}$, then under this situation, Maggie can always fool Victor with probability larger than $\frac{3}{4}$ by using $x \equiv r^{2} \bmod n$, without the ability to compute a square root of u.

[^2]: ${ }^{\ddagger}$ For a prime p, the first algorithm will say p is a prime, and the second algorithm may say p is a not a prime. For p is not a prime, the first algorithm may say p is a prime, and the second algorithm will say p is not a prime. Thus we can not tell with full confidence that p is a prime or not. However, p can be decided if the first algorithm say it is not a prime, or the second algorithm say it is a prime. Then if thinking in the expected time, we can use those two algorithms to decide the primality of p with full confidence.

